34 research outputs found

    Biodiversity in urban gardens: assessing the accuracy of citizen science data on garden hedgehogs

    Get PDF
    Urban gardens provide a rich habitat for species that are declining in rural areas. However, collecting data in gardens can be logistically-challenging, time-consuming and intrusive to residents. This study examines the potential of citizen scientists to record hedgehog sightings and collect habitat data within their own gardens using an online questionnaire. Focussing on a charismatic species meant that the number of responses was high (516 responses were obtained in 6 weeks, with a ~ 50:50% split between gardens with and without hedgehog sightings). While many factors commonly thought to influence hedgehog presence (e.g. compost heaps) were present in many hedgehog-frequented gardens, they were not discriminatory as they were also found in gardens where hedgehogs were not seen. Respondents were most likely to have seen hedgehogs in their garden if they had also seen hedgehogs elsewhere in their neighbourhood. However, primary fieldwork using hedgehog ‘footprint tunnels’ showed that hedgehogs were found to be just as prevalent in gardens in which hedgehogs had previously been reported as gardens where they had not been reported. Combining these results indicates that hedgehogs may be more common in urban and semi-urban gardens than previously believed, and that casual volunteer records of hedgehogs may be influenced more by the observer than by habitat preferences of the animal. When verified, volunteer records can provide useful information, but care is needed in interpreting these data

    Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes

    Get PDF
    © 2016 International Society for Microbial Ecology All rights reserved. Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success

    Pinpointing beta adrenergic receptor in ageing pathophysiology: victim or executioner? Evidence from crime scenes

    Get PDF

    Modulation of behaviour and virulence of a high alginate expressing Pseudomonas aeruginosa strain from cystic fibrosis by oral commensal bacterium Streptococcus anginosus

    No full text
    Cystic fibrosis (CF) airways harbour complex and dynamic polymicrobial communities that include many oral bacteria. Despite increased knowledge of CF airway microbiomes the interaction between established CF pathogens and other resident microbes and resulting impact on disease progression is poorly understood. Previous studies have demonstrated that oral commensal streptococci of the Anginosus group (AGS) can establish chronic pulmonary infections and become numerically dominant in CF sputa indicating that they play an important role in CF microbiome dynamics. In this study a strain of Pseudomonas aeruginosa (DWW2) of the mucoid alginate overproducing phenotype associated with chronic CF airway infection and a strain of the oral commensal AGS species Streptococcus anginosus (3a) from CF sputum were investigated for their ability to co-exist and their responses to biofilm co-culture. Bacteria in biofilms were quantified, pyocyanin expression by DWW2 was measured and the effect of AGS strain 3a on reversion of DWW2 to a non-mucoidal phenotype investigated. The virulence of DWW2, 3a and colony variant phenotypes of DWW2 in mono- and co-culture were compared in a Galleria mellonella infection model. Co-culture biofilms were formed in normoxic, hypercapnic (10% CO2) and anoxic atmospheres with the streptococcus increasing in number in co-culture, indicating that these bacteria would be able to co-exist and thrive within the heterogeneous microenvironments of the CF airway. The streptococcus caused increased pyocyanin expression by DWW2 and colony variants by stimulating reversion of the mucoid phenotype to the high pyocyanin expressing non-mucoid phenotype. The latter was highly virulent in the infection model with greater virulence when in co-culture with the streptococcus. The results of this study demonstrate that the oral commensal S. anginosus benefits from interaction with P. aeruginosa of the CF associated mucoid phenotype and modulates the behaviour of the pseudomonad in ways that may be clinically relevant
    corecore