41 research outputs found

    Imitators of exercise-induced bronchoconstriction

    Get PDF
    Exercise-induced bronchoconstriction (EIB) is described by transient narrowing of the airways after exercise. It occurs in approximately 10% of the general population, while athletes may show a higher prevalence, especially in cold weather and ice rink athletes. Diagnosis of EIB is often made on the basis of self-reported symptoms without objective lung function tests, however, the presence of EIB can not be accurately determined on the basis of symptoms and may be under-, over-, or misdiagnosed. The goal of this review is to describe other clinical entities that mimic asthma or EIB symptoms and can be confused with EIB

    Cardiovascular effects of sub-daily levels of ambient fine particles: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the effects of daily fine particulate exposure (PM) have been well reviewed, the epidemiological and physiological evidence of cardiovascular effects associated to sub-daily exposures has not. We performed a theoretical model-driven systematic non-meta-analytical literature review to document the association between PM sub-daily exposures (≤6 hours) and arrhythmia, ischemia and myocardial infarction (MI) as well as the likely mechanisms by which sub-daily PM exposures might induce these acute cardiovascular effects. This review was motivated by the assessment of the risk of exposure to elevated sub-daily levels of PM during fireworks displays.</p> <p>Methods</p> <p>Medline and Elsevier's EMBase were consulted for the years 1996-2008. Search keywords covered potential cardiovascular effects, the pollutant of interest and the short duration of the exposure. Only epidemiological and experimental studies of adult humans (age > 18 yrs) published in English were reviewed. Information on design, population and PM exposure characteristics, and presence of an association with selected cardiovascular effects or physiological assessments was extracted from retrieved articles.</p> <p>Results</p> <p>Of 231 articles identified, 49 were reviewed. Of these, 17 addressed the relationship between sub-daily exposures to PM and cardiovascular effects: five assessed ST-segment depression indicating ischemia, eight assessed arrhythmia or fibrillation and five considered MI. Epidemiologic studies suggest that exposure to sub-daily levels of PM is associated with MI and ischemic events in the elderly. Epidemiological studies of sub-daily exposures suggest a plausible biological mechanism involving the autonomic nervous system while experimental studies suggest that vasomotor dysfunction may also relate to the occurrence of MI and ischemic events.</p> <p>Conclusions</p> <p>Future studies should clarify associations between cardiovascular effects of sub-daily PM exposure with PM size fraction and concurrent gaseous pollutant exposures. Experimental studies appear more promising for elucidating the physiological mechanisms, time courses and causes than epidemiological studies which employ central pollution monitors for measuring effects and for assessing their time course. Although further studies are needed to strengthen the evidence, given that exposure to sub-daily high levels of PM (for a few hours) is frequent and given the suggestive evidence that sub-daily PM exposures are associated with the occurrence of cardiovascular effects, we recommend that persons with cardiovascular diseases avoid such situations.</p

    Urban air pollution and emergency room admissions for respiratory symptoms: a case-crossover study in Palermo, Italy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Air pollution from vehicular traffic has been associated with respiratory diseases. In Palermo, the largest metropolitan area in Sicily, urban air pollution is mainly addressed to traffic-related pollution because of lack of industrial settlements, and the presence of a temperate climate that contribute to the limited use of domestic heating plants. This study aimed to investigate the association between traffic-related air pollution and emergency room admissions for acute respiratory symptoms.</p> <p>Methods</p> <p>From January 2004 through December 2007, air pollutant concentrations and emergency room visits were collected for a case-crossover study conducted in Palermo, Sicily. Risk estimates of short-term exposures to particulate matter and gaseous ambient pollutants including carbon monoxide, nitrogen dioxide, and sulfur dioxide were calculated by using a conditional logistic regression analysis.</p> <p>Results</p> <p>Emergency departments provided data on 48,519 visits for respiratory symptoms. Adjusted case-crossover analyses revealed stronger effects in the warm season for the most part of the pollutants considered, with a positive association for PM<sub>10 </sub>(odds ratio = 1.039, 95% confidence interval: 1.020 - 1.059), SO<sub>2 </sub>(OR = 1.068, 95% CI: 1.014 - 1.126), nitrogen dioxide (NO<sub>2</sub>: OR = 1.043, 95% CI: 1.021 - 1.065), and CO (OR = 1.128, 95% CI: 1.074 - 1.184), especially among females (according to an increase of 10 μg/m<sup>3 </sup>in PM<sub>10</sub>, NO<sub>2</sub>, SO<sub>2</sub>, and 1 mg/m<sup>3 </sup>in CO exposure). A positive association was observed either in warm or in cold season only for PM<sub>10</sub>.</p> <p>Conclusions</p> <p>Our findings suggest that, in our setting, exposure to ambient levels of air pollution is an important determinant of emergency room (ER) visits for acute respiratory symptoms, particularly during the warm season. ER admittance may be considered a good proxy to evaluate the adverse effects of air pollution on respiratory health.</p

    Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis

    Get PDF
    Air pollution has been associated with significant adverse health effects leading to increased overall morbidity and mortality of worldwide significance. Epidemiological studies have shown that the largest portion of air pollution-related mortality is due to cardiovascular diseases, predominantly those of ischemic nature. Human studies suggest an association with atherosclerosis and increasing experimental animal data support that this association is likely to be causal. While both gasses and particles have been linked to detrimental health effects, more evidence implicates the particulate matter (PM) components as major responsible for a large portion of the proatherogenic effects. Multiple experimental approaches have revealed the ability of PM components to trigger and/or enhance free radical reactions in cells and tissues, both ex vivo as well as in vivo. It appears that exposure to PM leads to the development of systemic prooxidant and proinflammatory effects that may be of great importance in the development of atherosclerotic lesions. This article reviews the epidemiological studies, experimental animal, and cellular data that support the association of air pollutants, especially the particulate components, with systemic oxidative stress, inflammation, and atherosclerosis. It also reviews the use of transcriptomic studies to elucidate molecular pathways of importance in those systemic effects

    Transport of Particles in Intestinal Mucus under Simulated Infant and Adult Physiological Conditions: Impact of Mucus Structure and Extracellular DNA

    Get PDF
    The final boundary between digested food and the cells that take up nutrients in the small intestine is a protective layer of mucus. In this work, the microstructural organization and permeability of the intestinal mucus have been determined under conditions simulating those of infant and adult human small intestines. As a model, we used the mucus from the proximal (jejunal) small intestines of piglets and adult pigs. Confocal microscopy of both unfixed and fixed mucosal tissue showed mucus lining the entire jejunal epithelium. The mucus contained DNA from shed epithelial cells at different stages of degradation, with higher amounts of DNA found in the adult pig. The pig mucus comprised a coherent network of mucin and DNA with higher viscosity than the more heterogeneous piglet mucus, which resulted in increased permeability of the latter to 500-nm and 1-µm latex beads. Multiple-particle tracking experiments revealed that diffusion of the probe particles was considerably enhanced after treating mucus with DNase. The fraction of diffusive 500-nm probe particles increased in the pig mucus from 0.6% to 64% and in the piglet mucus from ca. 30% to 77% after the treatment. This suggests that extracellular DNA can significantly contribute to the microrheology and barrier properties of the intestinal mucus layer. To our knowledge, this is the first time that the structure and permeability of the small intestinal mucus have been compared between different age groups and the contribution of extracellular DNA highlighted. The results help to define rules governing colloidal transport in the developing small intestine. These are required for engineering orally administered pharmaceutical preparations with improved delivery, as well as for fabricating novel foods with enhanced nutritional quality or for controlled calorie uptake
    corecore