26 research outputs found

    Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in North Cameroon

    Get PDF
    BACKGROUND: Recent field studies indicated that insecticide-treated bednets (ITNs) maintain their efficacy despite a high frequency of the knock-down resistance (kdr) gene in Anopheles gambiae populations. It was essential to evaluate ITNs efficacy in areas with metabolic-based resistance. METHODS: Bifenthrin was used in this experiment because it is considered a promising candidate for bednets impregnation. Nets were treated at 50 mg/m(2), a dose that has high insecticidal activity on kdr mosquitoes and at 5 mg/m(2), a dose that kills 95% of susceptible mosquitoes under laboratory conditions with 3 minutes exposure. Bednets were holed to mimic physical damage. The trial was conducted in three experimental huts from Pitoa, North-Cameroon where Anopheles gambiae displays metabolic resistance and cohabits with An. funestus. RESULTS: Bifenthrin at 50 mg/m(2 )significantly reduced anophelines' entry rate (>80%). This was not observed at 5 mg/m(2). Both treatments increased exophily in An. gambiae, and to a lesser extent in An. funestus. With bifenthrin at high dosage, over 60% reduction in blood feeding and 75–90% mortality rates were observed in both vectors. Despite presence of holes, only a single An. gambiae and two An. funestus females were collected inside the treated net, and all were found dead. The same trends were observed with low dosage bifenthrin though in most cases, no significant difference was found with the untreated control net. CONCLUSION: Bifenthrin-impregnated bednets at 50 mg/m(2 )were efficient in the reduction of human-vector contact in Pitoa. Considerable personal protection was gained against An. funestus and metabolic pyrethroid resistant An. gambiae populations

    Reverse and Conventional Chemical Ecology Approaches for the Development of Oviposition Attractants for Culex Mosquitoes

    Get PDF
    Synthetic mosquito oviposition attractants are sorely needed for surveillance and control programs for Culex species, which are major vectors of pathogens causing various human diseases, including filariasis, encephalitis, and West Nile encephalomyelitis. We employed novel and conventional chemical ecology approaches to identify potential attractants, which were demonstrated in field tests to be effective for monitoring populations of Cx. p. quinquefasciatus in human dwellings. Immunohistochemistry studies showed that an odorant-binding protein from this species, CquiOBP1, is expressed in trichoid sensilla on the antennae, including short, sharp-tipped trichoid sensilla type, which house an olfactory receptor neuron sensitive to a previously identified mosquito oviposition pheromone (MOP), 6-acetoxy-5-hexadecanolide. CquiOBP1 exists in monomeric and dimeric forms. Monomeric CquiOBP1 bound MOP in a pH-dependent manner, with a change in secondary structure apparently related to the loss of binding at low pH. The pheromone antipode showed higher affinity than the natural stereoisomer. By using both CquiOBP1 as a molecular target in binding assays and gas chromatography-electroantennographic detection (GC-EAD), we identified nonanal, trimethylamine (TMA), and skatole as test compounds. Extensive field evaluations in Recife, Brazil, a region with high populations of Cx. p. quinquefasciatus, showed that a combination of TMA (0.9 µg/l) and nonanal (0.15 ng/µl) is equivalent in attraction to the currently used infusion-based lure, and superior in that the offensive smell of infusions was eliminated in the newly developed synthetic mixture

    Molecular survey of pyrethroid resistance mechanisms in Mexican field populations of Rhipicephalus (Boophilus) microplus

    Get PDF
    Susceptibility to synthetic pyrethroids (SP´s) and the role of two major resistance mechanisms were evaluated in Mexican Rhipicephalus microplus tick populations. Larval packet test (LPT), knock-down (kdr) PCR allele-specific assay (PASA) and esterase activity assays were conducted in tick populations for cypermethrin, flumethrin and deltamethrin. Esterase activity did not have a significant correlation with SP´s resistance. However a significant correlation (p < 0.01) was found between the presence of the sodium channel mutation, and resistance to SP´s as measured by PASA and LPT respectively. Just over half the populations (16/28) were cross-resistant to flumethrin, deltamethrin and cypermethrine, 21.4% of the samples (6/28) were susceptible to all of the three pyrethroids 10.7 of the samples (3/28) were resistant to flumethrin, 3.4 of the samples (1/28) were resistant to deltamethrin only and 7.1% (2/28) were resistant to flumethrin and deltamethrin. The presence of the kdr mutation correlates with resistance to the SP´s as a class. Target site insensitivity is the major mechanism of resistance to SP´s in Mexican R. microplus field strains, involving the presence of a sodium channel mutation, however, esterase-based, other mutations or combination of mechanisms can also occur

    Juvenile Hormone (JH) Esterase of the Mosquito Culex quinquefasciatus Is Not a Target of the JH Analog Insecticide Methoprene

    Get PDF
    Juvenile hormones (JHs) are essential sesquiterpenes that control insect development and reproduction. JH analog (JHA) insecticides such as methoprene are compounds that mimic the structure and/or biological activity of JH. In this study we obtained a full-length cDNA, cqjhe, from the southern house mosquito Culex quinquefasciatus that encodes CqJHE, an esterase that selectively metabolizes JH. Unlike other recombinant esterases that have been identified from dipteran insects, CqJHE hydrolyzed JH with specificity constant (kcat/KM ratio) and Vmax values that are common among JH esterases (JHEs). CqJHE showed picomolar sensitivity to OTFP, a JHE-selective inhibitor, but more than 1000-fold lower sensitivity to DFP, a general esterase inhibitor. To our surprise, CqJHE did not metabolize the isopropyl ester of methoprene even when 25 pmol of methoprene was incubated with an amount of CqJHE that was sufficient to hydrolyze 7,200 pmol of JH to JH acid under the same assay conditions. In competition assays in which both JH and methoprene were available to CqJHE, methoprene did not show any inhibitory effects on the JH hydrolysis rate even when methoprene was present in the assay at a 10-fold higher concentration relative to JH. Our findings indicated that JHE is not a molecular target of methoprene. Our findings also do not support the hypothesis that methoprene functions in part by inhibiting the action of JHE

    Molecular Ecology of Pyrethroid Knockdown Resistance in Culex pipiens pallens Mosquitoes

    Get PDF
    Pyrethroid insecticides have been extensively used in China and worldwide for public health pest control. Accurate resistance monitoring is essential to guide the rational use of insecticides and resistance management. Here we examined the nucleotide diversity of the para-sodium channel gene, which confers knockdown resistance (kdr) in Culex pipiens pallens mosquitoes in China. The sequence analysis of the para-sodium channel gene identified L1014F and L1014S mutations. We developed and validated allele-specific PCR and the real-time TaqMan methods for resistance diagnosis. The real-time TaqMan method is more superior to the allele-specific PCR method as evidenced by higher amplification rate and better sensitivity and specificity. Significant positive correlation between kdr allele frequency and bioassay-based resistance phenotype demonstrates that the frequency of L1014F and L1014S mutations in the kdr gene can be used as a molecular marker for deltamethrin resistance monitoring in natural Cx. pipiens pallens populations in the East China region. The laboratory selection experiment found that L1014F mutation frequency, but not L1014S mutation, responded to deltamethrin selection, suggesting that the L1014F mutation is the key mutation conferring resistance to deltamethrin. High L1014F mutation frequency detected in six populations of Cx. pipens pallens suggests high prevalence of pyrethroid resistance in Eastern China, calling for further surveys to map the resistance in China and for investigating alternative mosquito control strategies

    Sex Differences in the Brain: A Whole Body Perspective

    Get PDF
    Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Sex differences in the brain: a whole body perspective

    Get PDF
    corecore