67 research outputs found

    Proapoptotic genes BAX and CD40L are predictors of survival in transitional cell carcinoma of the bladder

    Get PDF
    The purpose of the study was to investigate the effects of expression of a range of genes involved in apoptosis on outcome in bladder cancer. Immunohistochemistry was used to examine expression of BCL2, BAX, P53, CD40 and CD40L in archival tissues of patients included in various treatment trials for transitional cell carcinoma (TCC) of the bladder. Data were collected on 94 patients who first presented with either invasive or superficial bladder cancer. Median follow-up for alive patients was 83 months (m) (range 12-195 m). Median survival was 80 m (95% CI=56-128 m). Median survivals for the various markers were as follows: BAX-positive patients 110 m vs BAX-negative patients 18 m (P=0.0002); CD40L-positive patients 95 m vs CD40L-negative patients 45 m (P=0.04); BCL2-positive patients 44 m and BCL2-negative patients 74 m, (P=0.64); CD40-positive patients 110 m and CD40 negative patients 45 m (P=0.12); and P53 positive patients 80 m and P53 negative patients 45 m (P=0.58). In conclusion, it was seen that overexpressions of BAX and CD40L are prognostic of better survival in TCC of the bladder. Our results also raise the possibility of the future development of CD40- and CD40 ligand-based immunotherapy for bladder cancer. This study links proapoptotic and antiapoptotic markers to overall survival

    Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage

    Get PDF
    Bacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean. Phylogenomic analyses establish SAR86 as a basal and divergent lineage of γ-proteobacteria, and the individual genomes display a temperature-dependent distribution. Modestly sized at 1.25–1.7 Mbp, the SAR86 genomes lack several pathways for amino-acid and vitamin synthesis as well as sulfate reduction, trends commonly observed in other abundant marine microbes. SAR86 appears to be an aerobic chemoheterotroph with the potential for proteorhodopsin-based ATP generation, though the apparent lack of a retinal biosynthesis pathway may require it to scavenge exogenously-derived pigments to utilize proteorhodopsin. The genomes contain an expanded capacity for the degradation of lipids and carbohydrates acquired using a wealth of tonB-dependent outer membrane receptors. Like the abundant planktonic marine bacterial clade SAR11, SAR86 exhibits metabolic streamlining, but also a distinct carbon compound specialization, possibly avoiding competition

    Social Relationships and Mortality Risk: A Meta-analytic Review

    Get PDF
    In a meta-analysis, Julianne Holt-Lunstad and colleagues find that individuals' social relationships have as much influence on mortality risk as other well-established risk factors for mortality, such as smoking

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials

    Get PDF
    Background Neoadjuvant chemotherapy (NACT) for early breast cancer can make breast-conserving surgery more feasible and might be more likely to eradicate micrometastatic disease than might the same chemotherapy given after surgery. We investigated the long-term benefits and risks of NACT and the influence of tumour characteristics on outcome with a collaborative meta-analysis of individual patient data from relevant randomised trials. Methods We obtained information about prerandomisation tumour characteristics, clinical tumour response, surgery, recurrence, and mortality for 4756 women in ten randomised trials in early breast cancer that began before 2005 and compared NACT with the same chemotherapy given postoperatively. Primary outcomes were tumour response, extent of local therapy, local and distant recurrence, breast cancer death, and overall mortality. Analyses by intention-to-treat used standard regression (for response and frequency of breast-conserving therapy) and log-rank methods (for recurrence and mortality). Findings Patients entered the trials from 1983 to 2002 and median follow-up was 9 years (IQR 5–14), with the last follow-up in 2013. Most chemotherapy was anthracycline based (3838 [81%] of 4756 women). More than two thirds (1349 [69%] of 1947) of women allocated NACT had a complete or partial clinical response. Patients allocated NACT had an increased frequency of breast-conserving therapy (1504 [65%] of 2320 treated with NACT vs 1135 [49%] of 2318 treated with adjuvant chemotherapy). NACT was associated with more frequent local recurrence than was adjuvant chemotherapy: the 15 year local recurrence was 21·4% for NACT versus 15·9% for adjuvant chemotherapy (5·5% increase [95% CI 2·4–8·6]; rate ratio 1·37 [95% CI 1·17–1·61]; p=0·0001). No significant difference between NACT and adjuvant chemotherapy was noted for distant recurrence (15 year risk 38·2% for NACT vs 38·0% for adjuvant chemotherapy; rate ratio 1·02 [95% CI 0·92–1·14]; p=0·66), breast cancer mortality (34·4% vs 33·7%; 1·06 [0·95–1·18]; p=0·31), or death from any cause (40·9% vs 41·2%; 1·04 [0·94–1·15]; p=0·45). Interpretation Tumours downsized by NACT might have higher local recurrence after breast-conserving therapy than might tumours of the same dimensions in women who have not received NACT. Strategies to mitigate the increased local recurrence after breast-conserving therapy in tumours downsized by NACT should be considered—eg, careful tumour localisation, detailed pathological assessment, and appropriate radiotherapy

    Accelerated Partial Breast Irradiation (APBI): A review of available techniques

    Get PDF
    Breast conservation therapy (BCT) is the procedure of choice for the management of the early stage breast cancer. However, its utilization has not been maximized because of logistics issues associated with the protracted treatment involved with the radiation treatment. Accelerated Partial Breast Irradiation (APBI) is an approach that treats only the lumpectomy bed plus a 1-2 cm margin, rather than the whole breast. Hence because of the small volume of irradiation a higher dose can be delivered in a shorter period of time. There has been growing interest for APBI and various approaches have been developed under phase I-III clinical studies; these include multicatheter interstitial brachytherapy, balloon catheter brachytherapy, conformal external beam radiation therapy and intra-operative radiation therapy (IORT). Balloon-based brachytherapy approaches include Mammosite, Axxent electronic brachytherapy and Contura, Hybrid brachytherapy devices include SAVI and ClearPath. This paper reviews the different techniques, identifying the weaknesses and strength of each approach and proposes a direction for future research and development. It is evident that APBI will play a role in the management of a selected group of early breast cancer. However, the relative role of the different techniques is yet to be clearly identified

    Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue

    Get PDF
    The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3′-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3′-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation
    corecore