13 research outputs found
The Use of EOS Imaging to Assess Curve Magnitude Changes in Adolescent Idiopathic Scoliosis Undertaking Brace Management
Deep Learning-Based Automatic Segmentation for Reconstructing Vertebral Anatomy of Healthy Adolescents and Patients With Adolescent Idiopathic Scoliosis (AIS) Using MRI Data
OS6-2 SEQUENTIAL MRI REVEALS INDIVIDUAL LEVEL DEFORMITIES IN THE GROWING SCOLIOTIC SPINE THAT ARE NOT SEEN CLINICALLY BY THE COBB ANGLE(OS6: Australian and New Zealand Society for Biomechanics (ANZSB))
Achieving maximal voluntary contraction of paraspinal muscles requires two tasks: Insight from an EMG study of females with and without adolescent idiopathic scoliosis
An accurate estimation of maximal voluntary muscle activation is critical for normalisation in scientific studies. Only a handful of studies appropriately normalise muscle activation data when investigating paraspinal muscle activity in populations such as adolescent idiopathic scoliosis (AIS). This neglect compromises the ability to interpret data. The aim of this study was to determine the type of trunk extension task that reliably achieves peak paraspinal muscle activation in participants with and without AIS. Adolescent females with typically developing spines (controls: n = 20, mean[SD] age 13.1[1.8]years), or primary right thoracic AIS (n = 24, age: 13.8[1.5]years, Cobb angle thoracic: 39.5[16.4]°, lumbar: 28.0[11.6]°) performed a series of 3x unresisted and 3x resisted maximal voluntary trunk extensions in prone. Paraspinal muscle activation was recorded bilaterally at two thoracic levels and one lumbar level using surface electromyography (EMG). Muscle activation was highly repeatable within task [ICC 0.77-0.95, all p < 0.01]. At group level, there were no differences in peak muscle activation between tasks irrespective of side (left/right) or vertebral level (Estimate 0.98, 95%CI 0.36 to 2.65, p=0.97). Peak activation was achieved with the unresisted task in 40.5%, and resisted task in 59.5% of the total outcomes (6 recording locations, 44 participants). Individual participant maximum amplitude varied up to 64% (mean[SD]:18[13]%) between the unresisted and resisted tasks. We recommend that both the resisted and unresisted trunk extension tasks are used to increase confidence that a maximum voluntary activation of paraspinal muscles is achieved. Failure to do so could introduce large error in the estimations of muscle activation
Preventing Position-Related Brachial Plexus Injury with Intraoperative Somatosensory Evoked Potentials and Transcranial Electrical Motor Evoked Potentials during Anterior Cervical Spine Surgery
A framework for the radiologic diagnosis of skeletal dysplasias and syndromes as revealed by molecular genetics
Intraoperative neurophysiological monitoring for craniovertebral junction surgery
Craniovertebral junction (CVJ) surgery encompasses a wide spectrum of neurosurgical procedures ranging from transoral approaches for CVJ bone anomalies to surgery for intramedullary tumours. Intraoperative neurophysiological monitoring (IONM) has been increasingly used in recent years because of its ability to prevent neurological complications during surgery. In CVJ surgery the risk of neurological injuries is related first to the positioning of the patient and then to the surgical procedure. Application of IONM during the positioning of the patient permits fast recognition of impending causes of neurological injury. During surgery, continuous IONM permits real-time assessment of the functional integrity of the spinal tracts and provides useful feedback during surgical manoeuvres. The applications of IONM are mainly related to intradural procedures, but wider application of these techniques during surgery for CVJ instability and degenerative disorders has recently been described, leading also to better understanding of the pathophysiology of spinal cord injuries. In this paper we review and discuss the principal IONM techniques used during surgery around the CVJ
