64 research outputs found

    Investigation of first ray mobility during gait by kinematic fluoroscopic imaging-a novel method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is often suggested that sagittal instability at the first tarso-metatarsal joint level is a primary factor for hallux valgus and that sagittal instability increases with the progression of the deformity. The assessment of the degree of vertical instability is usually made by clinical evaluation while any measurements mostly refer to a static assessment of medial ray mobility (i.e. the plantar/dorsal flexion in the sagittal plane). Testing methods currently available cannot attribute the degree of mobility to the corresponding anatomical joints making up the medial column of the foot. The aim of this study was to develop a technique which allows for a quantification of the in-vivo sagittal mobility of the joints of the medial foot column during the roll-over process under full weight bearing.</p> <p>Methods</p> <p>Mobility of first ray bones was investigated by dynamic distortion-free fluoroscopy (25 frames/s) of 14 healthy volunteers and 8 patients with manifested clinical instability of the first ray. A CAD-based evaluation method allowed the determination of mobility and relative displacements and rotations of the first ray bones within the sagittal plane during the stance phase of gait.</p> <p>Results</p> <p>Total flexion of the first ray was found to be 13.63 (SD 6.14) mm with the healthy volunteers and 13.06 (SD 8.01) mm with the patients (resolution: 0.245 mm/pixel). The dorsiflexion angle was 5.27 (SD 2.34) degrees in the healthy volunteers and increased to 5.56 (SD 3.37) degrees in the patients. Maximum rotations were found at the naviculo-cuneiform joints and least at the first tarso-metatarsal joint level in both groups.</p> <p>Conclusions</p> <p>Dynamic fluoroscopic assessment has been shown to be a valuable tool for characterisation of the kinematics of the joints of the medial foot column during gait.</p> <p>A significant difference in first ray flexion and angular rotation between the patients and healthy volunteers however could not be found.</p

    Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation

    Get PDF
    The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step

    Does ligament balancing technique affect kinematics in rotating platform, PCL retaining knee arthroplasties?: A prospective randomized study

    Get PDF
    The goal of this prospective, randomized, blinded trial was to determine if ligament balancing techniques for rotating platform TKA affect postoperative knee kinematics. Sixteen patients with unilateral rotating platform TKA consented to participate in this institutional review board approved study. Eight patients were randomly selected to receive ligament balancing with an instrumented joint spreader device and eight patients received ligament balancing using fixed thickness spacer blocks. A single plane shape matching technique was used for kinematic analysis of static deep knee flexion and dynamic stair activities. There were no differences in knee kinematics between groups during static deep flexion activities. The spreader group demonstrated kinematics more similar to the normal knee during the ascending phase of the dynamic stair activity. Knee kinematics in static knee flexion were unaffected by ligament balancing technique, while knees balanced with the spreader demonstrated a medial pivot motion pattern during stair ascent. This medial pivot motion pattern may improve long-term results by more closely replicating normal knee kinematics

    In vivo measures of cartilage deformation: patterns in healthy and osteoarthritic female knees using 3T MR imaging

    Get PDF
    ObjectiveTo explore and to compare the magnitude and spatial pattern of in vivo femorotibial cartilage deformation in healthy and in osteoarthritic (OA) knees.MethodsOne knee each in 30 women (age: 55 ± 6 years; BMI: 28 ± 2.4 kg/m(2); 11 healthy and 19 with radiographic femorotibial OA) was examined at 3Tesla using a coronal fat-suppressed gradient echo SPGR sequence. Regional and subregional femorotibial cartilage thickness was determined under unloaded and loaded conditions, with 50% body weight being applied to the knee in 20° knee flexion during imaging.ResultsCartilage became significantly (p &lt; 0.05) thinner during loading in the medial tibia (-2.7%), the weight-bearing medial femur (-4.1%) and in the lateral tibia (-1.8%), but not in the lateral femur (+0.1%). The magnitude of deformation in the medial tibia and femur tended to be greater in osteoarthritic knees than in healthy knees. The subregional pattern of cartilage deformation was similar for the different stages of radiographic OA.ConclusionOsteoarthritic cartilage tended to display greater deformation upon loading than healthy cartilage, suggesting that knee OA affects the mechanical properties of cartilage. The pattern of in vivo deformation indicated that cartilage loss in OA progression is mechanically driven
    corecore