28 research outputs found

    Conjunctival MicroRNA expression in inflammatory trachomatous scarring.

    Get PDF
    PURPOSE: Trachoma is a fibrotic disease of the conjunctiva initiated by Chlamydia trachomatis infection. This blinding disease affects over 40 million people worldwide yet the mechanisms underlying its pathogenesis remain poorly understood. We have investigated host microRNA (miR) expression in health (N) and disease (conjunctival scarring with (TSI) and without (TS) inflammation) to determine if these epigenetic differences are associated with pathology. METHODS: We collected two independent samples of human conjunctival swab specimens from individuals living in The Gambia (n = 63 & 194). miR was extracted, and we investigated the expression of 754 miR in the first sample of 63 specimens (23 N, 17 TS, 23 TSI) using Taqman qPCR array human miRNA genecards. Network and pathway analysis was performed on this dataset. Seven miR that were significantly differentially expressed between different phenotypic groups were then selected for validation by qPCR in the second sample of 194 specimens (93 N, 74 TS, 22 TSI). RESULTS: Array screening revealed differential expression of 82 miR between N, TS and TSI phenotypes (fold change >3, p<0.05). Predicted mRNA targets of these miR were enriched in pathways involved in fibrosis and epithelial cell differentiation. Two miR were confirmed as being differentially expressed upon validation by qPCR. miR-147b is significantly up-regulated in TSI versus N (fold change = 2.3, p = 0.03) and miR-1285 is up-regulated in TSI versus TS (fold change = 4.6, p = 0.005), which was consistent with the results of the qPCR array. CONCLUSIONS: miR-147b and miR-1285 are up-regulated in inflammatory trachomatous scarring. Further investigation of the function of these miR will aid our understanding of the pathogenesis of trachoma

    Evaluation of the seismic capacity of nonstructural components

    No full text
    Nonstructural components (NSC) economic impact and the extensive damages due to NSC after an earthquake motivate the research studies conducted in the past few years at the Department of Structures for Engineering and Architecture, University of Naples Federico II on this topic. The seismic qualification of continuous ceiling systems, plasterboard and brick internal partitions via shake table tests is described in the paper. The test campaign on continuous ceiling systems highlights the low fragility of the tested specimen, primarily caused by: (a) the continuous nature of the ceiling, (b) the dense suspen-sion grid, and (c) the large number of hangers being used. In order to test the internal partitions, which are mainly displacement-sensitive components, an appropriate steel test structure is designed. This structure simulates the behavior of a generic floor in a structure that exhibits an interstorey drift equal to 0.5% for a frequent earthquake, according to Eurocode 8 prescriptions. Three possible damage states are considered in the study and correlated to an engineering demand parameter, i.e. the interstorey drift ratio, through the use of a damage scheme. Extensive tests show an excellent seismic performance of the plasterboard partition walls, which are characterized by innovative anti-seismic details. In fact, they show minor damage when subjected to interstorey drifts even larger than 1%. The shake table tests performed at different intensity levels on hollow brick partitions, widespread in the European zone, denote significant damage in the tested specimen for 0.3% interstorey drift and extensive damage for drift close to 1%. © Springer International Publishing Switzerland 2015

    Earthquake Resistant Design of Structures According to Eurocode 8

    No full text
    The chapter initially provides a summary of the contents of Eurocode 8, its aim being to offer both to the students and to practising engineers an easy introduction into the calculation and dimensioning procedures of this earthquake code. Specifically, the general rules for earthquake-resistant structures, the definition of design response spectra taking behaviour and importance factors into account, the application of linear and non-linear calculation methods and the structural safety verifications at the serviceability and ultimate limit state are presented. The application of linear and non-linear calculation methods and corresponding seismic design rules is demonstrated on practical examples for reinforced concrete, steel and masonry buildings. Furthermore, the seismic assessment of existing buildings is discussed and illustrated on the example of a typical historical masonry building in Italy. The examples are worked out in detail and each step of the design process, from the preliminary analysis to the final design, is explained in detail. © Springer-Verlag GmbH Germany, part of Springer Nature 2019. All rights reserved
    corecore