27 research outputs found

    Conceptual Framework for Managing Uncertainty in a Collaborative Agri-Food Supply Chain Context

    Full text link
    [EN] Agri-food supply chains are subjected to many sources of uncertainty. If these uncertainties are not managed properly, they can have a negative impact on the agri-food supply chain (AFSC) performance, its customers, and the environment. In this sense, collaboration is proposed as a possible solution to reduce it. For that, a conceptual framework (CF) for managing uncertainty in a collaborative context is proposed. In this context, this paper seeks to answer the following research questions: What are the existing uncertainty sources in the AFSCs? Can collaboration be used to reduce the uncertainty of AFSCs? Which elements can integrate a CF for managing uncertainty in a collaborative AFSC? The CF proposal is applied to the weather source of uncertainty in order to show its applicability.The first author acknowledges the partial support of the Program of Formation of University Professors of the Spanish Ministry of Education, Culture, and Sport (FPU15/03595). The other authors acknowledge the partial support of the Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems, funded by the EU under its funding scheme H2020-MSCA-RISE-2015.Esteso-Álvarez, A.; Alemany Díaz, MDM.; Ortiz Bas, Á. (2017). Conceptual Framework for Managing Uncertainty in a Collaborative Agri-Food Supply Chain Context. IFIP Advances in Information and Communication Technology. 506:715-724. https://doi.org/10.1007/978-3-319-65151-4_64S715724506Taylor, D.H., Fearne, A.: Towards a framework for improvement in the management of demand in agri-food supply chains. Supply Chain Manag. Int. J. 11, 379–384 (2006)Matopoulos, A., Vlachopoulou, M., Manthou, V., Manos, B.: A conceptual framework for supply chain collaboration: empirical evidence from the agri-food industry. Supply Chain Manag. Int. J. 12, 177–186 (2007)Ahumada, O., Villalobos, J.R.: Application of planning models in the agri-food supply chain: a review. Eur. J. Oper. Res. 196, 1–20 (2009)Tsolakis, N.K., Keramydas, C.A., Toka, A.K., Aidonis, D.A., Iakovou, E.T.: Agrifood supply chain management: a comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 120, 47–64 (2014)van der Vorst, J.G., Da Silva, C.A., Trienekens, J.H.: Agro-industrial supply chain management: Concepts and applications. FAO (2007)Borodin, V., Bourtembourg, J., Hnaien, F., Kabadie, N.: Handling uncertainty in agricultural supply chain management: a state of the art. Eur. J. Oper. Res. 254, 348–359 (2016)van der Vorst, J.G.A.J., Beulens, A.J.M.: Identifying sources of uncertainty to generate supply chain redesign strategies. Int. J. Phys. Distrib. Logist. Manag. 32, 409–430 (2000)Klosa, E.: A concept of models for supply chain speculative risk analysis and management. J. Econ. Manag. 12, 45–59 (2013)Samson, S., Reneke, J.A., Wiecek, M.M.: A review of different perspectices on uncertainty and risk and an alternative modeling paradigm. Reliab. Eng. Syst. Saf. 94, 558–567 (2009)Backus, G.B.C., Eidman, V.R., Dijkhuizen, A.A.: Farm decision making under risk and uncertainty. Neth. J. Agric. Sci. 45, 307–328 (1997)van der Vorst, J.G.: Effective food supply chains; Generating, modelling and evaluating supply chain scenarios. (2000)Amorim, P., Günther, H.O., Almada-Lobo, B.: Multi-objective integrated production and distribution planning of perishable products. Int. J. Prod. Econ. 138, 89–101 (2012)Amorim, P., Meyr, H., Almeder, C., Almada-Lobo, B.: Managing perishability in production-distribution planning: a discussion and review. Flex. Serv. Manuf. 25, 389–413 (2013)Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarria, D., Menesatti, P.: A review on agri-food supply chain traceability by means of RFID technology. Food Bioprocess Technol. 6, 353–366 (2013)Pahl, J., Voss, S.: Integrating deterioration and lifetime constraints in production and supply chain planning: a survey. Eur. J. Oper. Res. 238, 654–674 (2014)Grillo, H., Alemany, M.M.E., Ortiz, A.: A review of Mathematical models for supporting the order promising process under Lack of Homogeneity in product and other sources of uncertainty. Comput. Ind. Eng. 91, 239–261 (2016)Zwietering, M.H., van’t Riet, K.: Modelling of the quality of food: optimization of a cooling chain. In: Management Studies and the Agri-business: Management of Agri-chains, Wageningen, The Netherlands, pp. 108–117 (1994)Akkerman, R., Farahani, P., Grunow, M.: Quality, safety and sustainability in food distribution: a review of quantitative operations management approaches and challenges. Spectrum 32, 863–904 (2010)Apaiah, R.K., Hendrix, E.M.T., Meerdink, G., Linnemann, A.R.: Qualitative methodology for efficient food chain design. Trends Food Sci. Technol. 16, 204–214 (2005)Lehmann, R.J., Reiche, R., Schiefer, G.: Future internet and the agri-food sector: State-of-the-art in literature and research. Comput. Electron. Agric. 89, 158–174 (2012)Kusumastuti, R.D., van Donk, D.P., Teunter, R.: Crop-related harvesting and processing planning: a review. Int. J. Prod. Econ. 174, 76–92 (2016)Dreyer, H.C., Strandhagen, J.O., Hvolby, H.H., Romsdal, A., Alfnes, E.: Supply chain strategies for speciality foods: a Norwegian case study. Prod. Plan. Control 27, 878–893 (2016)Baghalian, A., Rezapour, S., Farahani, R.Z.: Robust supply chain network design with service level against disruptions and demand uncertainties: a real-life case. Eur. J. Oper. Res. 227, 199–215 (2013)Aggarwal, S., Srivastava, M.K.: Towards a grounded view of collaboration in Indian agri-food supply chains: a qualitative investigation. Br. Food J. 115, 1085–1106 (2016)Teimoury, E., Nedaei, H., Ansari, S., Sabbaghi, M.: A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: a system dynamics approach. Comput. Electron. Agric. 93, 37–45 (2013)Opara, L.U.: Traceability in agriculture and food supply chain: a review of basic concepts, technological implications, and future prospects. J. Food Agric. Environ. 1, 101–106 (2003)Kruize, J.W., Wolfert, S., Goense, D., Scholten, H., Beulens, A., Veenstra, T.: Integrating ICT applications for farm business collaboration processes using Fl Space. In: 2014 Annual SRII Global Conference, pp. 232–240. IEEE (2014)Oriade, C.A., Dillon, C.R.: Developments in biophysical and bioeconomic simulation of agricultural systems: a review. Agric. Econ. 17, 45–58 (1997)Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: value creation in a knowledge society. In: Wang, Kesheng, Kovacs, G.L., Wozny, Michael, Fang, Minglun (eds.) PROLAMAT 2006. IIFIP, vol. 207, pp. 26–40. Springer, Boston, MA (2006). doi: 10.1007/0-387-34403-9_4Prima Dania, W.A., Xing, K., Amer, Y.: Collaboration and sustainable agri-food supply chain: a literature review. MATEC Web Conf. 58 (2016)Simatupang, T.M., Sridharan, R.: The collaborative index: a measure for supply chain collaboration. Int. J. Phys. Distrib. Logist. Manag. 35, 44–62 (2005)Fischer, C., Hartmann, M., Reynolds, N., Leat, P., Revoredo-Giha, C., Henchion, M., Albisu, L.M., Gracia, A.: Factors influencing contractual choice and sustainable relationships in European agri-food supply chains. Eur. Rev. Agric. Econ. 36, 541–569 (2009

    Força muscular como determinante da eficiência do consumo de oxigênio e da máxima resposta metabólica ao exercício em pacientes com DPOC leve/moderada Muscle strength as a determinant of oxygen uptake efficiency and maximal metabolic response in patients with mild-to-moderate COPD

    No full text
    OBJETIVO: Comparar o comportamento de oxygen uptake efficiency slope (OUES, inclinação da eficiência do consumo de oxigênio) com o do consumo de oxigênio no pico do exercício (VO2pico). MÉTODOS: Estudo prospectivo transversal envolvendo 21 pacientes (15 homens) com DPOC leve/moderada que foram submetidos a espirometria, dinamometria de preensão palmar (DIN), teste cardiopulmonar de exercício e medida de lactato no pico do exercício (LACpico). RESULTADOS: A média de peso foi 66,7 ± 13,6 kg, e a de idade foi 60,7 ± 7,8 anos. Com exceção de VEF1 e relação VEF1/CVF (75,8 ± 18,6 do previsto e 56,6 ± 8,8, respectivamente), as demais variáveis espirométricas foram normais, assim como DIN. As médias, em % do previsto, para VO2pico (93,1 ± 15,4), FC máxima (92,5 ± 10,4) e OUES (99,4 ± 24,4), assim como a da taxa de troca respiratória (1,2 ± 0,1), indicaram estresse metabólico e hemodinâmico importante. A correlação entre o VO2pico e a OUES foi elevada (r = 0,747; p < 0,0001). A correlação entre DIN e VO2pico (r = 0,734; p < 0,0001) foi mais expressiva do que com aquela entre DIN e OUES (r = 0,453; p < 0,05). Resultados semelhantes ocorreram em relação às correlações de VO2pico e OUES com PImáx. Houve correlação significativa entre VO2pico e LACpico (r = -0,731; p < 0,0001), mas essa só ocorreu entre OUES e LACpico/potência máxima (r = -0,605; p = 0,004). CONCLUSÕES: Nossos resultados sugerem que, na DPOC leve/moderada, determinantes do VO2, além da força muscular global, têm um maior impacto na OUES do que no VO2pico.<br>OBJECTIVE: To compare the behavior of the oxygen uptake efficiency slope (OUES) with that of oxygen uptake at peak exertion (VO2peak). METHODS: This was a prospective cross-sectional study involving 21 patients (15 men) with mild-to-moderate COPD undergoing spirometry, handgrip strength (HGS) testing, cardiopulmonary exercise testing, and determination of lactate at peak exertion (LACpeak). RESULTS: Mean weight was 66.7 ± 13.6 kg, and mean age was 60.7 ± 7.8 years. With the exception of FEV1 and FEV1/FVC ratio (75.8 ± 18.6 of predicted and 56.6 ± 8.8, respectively), all spirometric variables were normal, as was HGS. The patients exhibited significant metabolic and hemodynamic stress, as evidenced by the means (% of predicted) for VO2peak (93.1 ± 15.4), maximum HR (92.5 ± 10.4), and OUES (99.4 ± 24.4), as well as for the gas exchange rate (1.2 ± 0.1). The correlation between VO2peak and OUES was significant (r = 0.747; p < 0.0001). The correlation between HGS and VO2peak (r = 0.734; p < 0.0001) was more significant than was that between HGS and OUES (r = 0.453; p < 0.05). Similar results were found regarding the correlations of VO2peak and OUES with MIP. Although LACpeak correlated significantly with VO2peak (r = -0.731; p < 0.0001), only LACpeak/maximum power correlated significantly with OUES (r = -0.605; p = 0.004). CONCLUSIONS: Our findings suggest that, in mild-to-moderate COPD, VO2 determinants other than overall muscle strength have a greater impact on OUES than on VO2peak
    corecore