7 research outputs found
Malaria vector species in Colombia: a review
Here we present a comprehensive review of the literature on the vectorial importance of the major Anopheles malaria vectors in Colombia. We provide basic information on the geographical distribution, altitudinal range, immature habitats, adult behaviour, feeding preferences and anthropophily, endophily and infectivity rates. We additionally review information on the life cycle, longevity and population fluctuation of Colombian Anopheles species. Emphasis was placed on the primary vectors that have been epidemiologically incriminated in malaria transmission: Anopheles darlingi, Anopheles albimanus and Anopheles nuneztovari. The role of a selection of local, regional or secondary vectors (e.g., Anopheles pseudopunctipennis and Anopheles neivai) is also discussed. We highlight the importance of combining biological, morphological and molecular data for the correct taxonomical determination of a given species, particularly for members of the species complexes. We likewise emphasise the importance of studying the bionomics of primary and secondary vectors along with an examination of the local conditions affecting the transmission of malaria. The presence and spread of the major vectors and the emergence of secondary species capable of transmitting human Plasmodia are of great interest. When selecting control measures, the anopheline diversity in the region must be considered. Variation in macroclimate conditions over a species' geographical range must be well understood and targeted to plan effective control measures based on the population dynamics of the local Anopheles species
Dynamics in multiplicity of Plasmodium falciparum infection among children with asymptomatic malaria in central Ghana
Abstract Background The determinants of malaria parasite virulence is not entirely known, but the outcome of malaria infection (asymptomatic or symptomatic) has been associated with carriage of distinct parasite genotypes. Alleles considered important for erythrocyte invasion and selected as candidate targets for malaria vaccine development are increasingly being shown to have distinct characteristics in infection outcomes. Any unique/distinct patterns or alleles linked to infection outcome should be reproducible for a given malaria-cohort regardless of location, time or intervention. This study compared merozoite surface protein 2 (MSP2) genotypes from children with asymptomatic malaria at same geographical location, from two time periods. Results As the prevalence and incidence of malaria (measured for other studies) significantly reduced between 2004 (time point one) and 2009 (time point two), MSP2 multiplicity of infections (MOI) also reduced significantly from 2.3 at time point (TP) one to 1.9 at TP two. IC/3D7 genotypes out-numbered FC27 genotypes at both time points. At TP2 however, FC27 allele diversity was more than the IC/3D7 allele diversity. A decrease in the IC/3D7:FC27 genotype proportions from 2:1 at TP1 to 1:1 at TP2, seemed to be driven mainly by a decrease in carriage of IC/3D7 alleles. MOI was higher in the dry season than in the subsequent wet season, but the decrease was not significant at TP2. Conclusion MSP2 MOI was higher in the dry season than in the subsequent wet season, while the carriage of IC/3D7 alleles decreased over this time period. It may be that decreases in transmission are related specifically to the IC/3D7 allelic family. The influence of transmission on MSP2 allele diversity needs to be clearly deciphered in studies which should include the use of sensitive methods for the detection of polymorphic parasite markers for both symptomatic and asymptomatic malaria. Such studies will enable better understanding of associations between allelic variants, MOI, transmission, malaria infection and disease