26 research outputs found

    The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections

    Get PDF
    Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013 The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate cocaine-induced changes in the concentrations of different redox forms of cysteine (Cys) and homocysteine (Hcy), and products of anaerobic Cys metabolism, i.e., labile, reduced sulfur (LS) in the rat plasma. The above-mentioned parameters were determined after i.p. acute and subchronic cocaine treatment as well as following i.v. cocaine self-administration using the yoked procedure. Additionally, Cys, Hcy, and LS levels were measured during the 10-day extinction training in rats that underwent i.v. cocaine administration. Acute i.p. cocaine treatment increased the total and protein-bound Hcy contents, decreased LS, and did not change the concentrations of Cys fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered the total and protein-bound Cys concentrations while LS level was unchanged. Cocaine self-administration enhanced the total and protein-bound Hcy levels, decreased LS content, and did not affect the Cys fractions. On the other hand, yoked cocaine infusions did not alter the concentration of Hcy fractions while decreased the total and protein-bound Cys and LS content. This extinction training resulted in the lack of changes in the examined parameters in rats with a history of cocaine self-administration while in the yoked cocaine group an increase in the plasma free Cys fraction and LS was seen. Our results demonstrate for the first time that cocaine does evoke significant changes in homeostasis of thiol amino acids Cys and Hcy, and in some products of anaerobic Cys metabolism, which are dependent on the way of cocaine administration

    Genetic variability of genome segments 3 and 9 of Fiji disease virus field isolates

    No full text
    Fiji leaf gall is an important disease of sugarcane in Australia and other Asia-Pacific countries. The causative agent is the reovirus Fiji disease virus (FDV). Previous reports indicate that there is variation in pathology between virus isolates. To investigate the amount of genetic variation found in FDV, 25 field isolates from Australia, Papua New Guinea and Malaysia were analysed by partial sequencing of genome segments S3 and S9. There was up to 15% divergence in the nucleotide sequence among the 25 isolates. A similar amount of divergence and pattern of relationships was found for each of the two genomic segments for most of the field isolates, although reassortment of genome segments seems likely for at least one of the Papua New Guinean isolates. The finding of a high level of variation in FDV isolated in different regions has implications for quarantine and disease management. The sequence data presented in this paper are available in the GenBank database under the accession numbers EU434958–EU435006

    A Practical Guide To Developing Effective Web-based Learning

    No full text
    OBJECTIVE: Online learning has changed medical education, but many “educational” websites do not employ principles of effective learning. This article will assist readers in developing effective educational websites by integrating principles of active learning with the unique features of the Web. DESIGN: Narrative review. RESULTS: The key steps in developing an effective educational website are: Perform a needs analysis and specify goals and objectives; determine technical resources and needs; evaluate preexisting software and use it if it fully meets your needs; secure commitment from all participants and identify and address potential barriers to implementation; develop content in close coordination with website design (appropriately use multimedia, hyperlinks, and online communication) and follow a timeline; encourage active learning (self-assessment, reflection, self-directed learning, problem-based learning, learner interaction, and feedback); facilitate and plan to encourage use by the learner (make website accessible and user-friendly, provide time for learning, and motivate learners); evaluate learners and course; pilot the website before full implementation; and plan to monitor online communication and maintain the site by resolving technical problems, periodically verifying hyperlinks, and regularly updating content. CONCLUSION: Teaching on the Web involves more than putting together a colorful webpage. By consistently employing principles of effective learning, educators will unlock the full potential of Web-based medical education
    corecore