2,557 research outputs found
A new effective method on critical point detection of planar curves
2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
High performance organic transistor active-matrix driver developed on paper substrate
published_or_final_versio
Moisture transport by Atlantic tropical cyclones onto the North American continent
Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004–2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7 to 18 % (mean 14 %) of total net onshore flux to Atlantic TCs. A reduced contribution of 10 % (range 9 to 11 %) was found for the 1980–2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980–2012 period, a further 8 % (range 6 to 9 % from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19 % (range 17 to 22 %) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Nino-Southern Oscillation phenomenon
Nanoscale phase-engineering of thermal transport with a Josephson heat modulator
Macroscopic quantum phase coherence has one of its pivotal expressions in the
Josephson effect [1], which manifests itself both in charge [2] and energy
transport [3-5]. The ability to master the amount of heat transferred through
two tunnel-coupled superconductors by tuning their phase difference is the core
of coherent caloritronics [4-6], and is expected to be a key tool in a number
of nanoscience fields, including solid state cooling [7], thermal isolation [8,
9], radiation detection [7], quantum information [10, 11] and thermal logic
[12]. Here we show the realization of the first balanced Josephson heat
modulator [13] designed to offer full control at the nanoscale over the
phase-coherent component of thermal currents. Our device provides
magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a
maximum of the flux-to-temperature transfer coefficient reaching 200 mK per
flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the
exact correspondence in the phase-engineering of charge and heat currents,
breaking ground for advanced caloritronic nanodevices such as thermal splitters
[14], heat pumps [15] and time-dependent electronic engines [16-19].Comment: 6+ pages, 4 color figure
Sum Rules from an Extra Dimension
Using the gravity side of the AdS/CFT correspondence, we investigate the
analytic properties of thermal retarded Green's functions for scalars,
conserved currents, the stress tensor, and massless fermions. We provide some
results concerning their large and small frequency behavior and their pole
structure. From these results, it is straightforward to prove the validity of
various sum rules on the field theory side of the duality. We introduce a novel
contraction mapping we use to study the large frequency behavior of the Green's
functions.Comment: v2: 23 pages (plus appendix), revised presentation, discussion of
branch cuts moved to appendix, and some minor changes; v1: 24 pages (plus
appendix
Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions
Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism
Non-Equilibrium Field Dynamics of an Honest Holographic Superconductor
Most holographic models of superconducting systems neglect the effects of
dynamical boundary gauge fields during the process of spontaneous
symmetry-breaking. Usually a global symmetry gets broken. This yields a
superfluid, which then is gauged "weakly" afterwards. In this work we build
(and probe the dynamics of) a holographic model in which a local boundary
symmetry is spontaneously broken instead. We compute two-point functions of
dynamical non-Abelian gauge fields in the normal and in the broken phase, and
find non-trivial gapless modes. Our AdS3 gravity dual realizes a p-wave
superconductor in (1+1) dimensions. The ground state of this model also breaks
(1+1)-dimensional parity spontaneously, while the Hamiltonian is
parity-invariant. We discuss possible implications of our results for a wider
class of holographic liquids.Comment: 32 pages, 12 figures; v3: string theory derivation of setup added
(section 3.1), improved presentation, version accepted by JHEP; v2: paragraph
added to discussion, figure added, references added, typos correcte
Imaging Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle
Twisted bilayer graphene with a twist angle of around 1.1{\deg} features a
pair of isolated flat electronic bands and forms a strongly correlated
electronic platform. Here, we use scanning tunneling microscopy to probe local
properties of highly tunable twisted bilayer graphene devices and show that the
flat bands strongly deform when aligned with the Fermi level. At half filling
of the bands, we observe the development of gaps originating from correlated
insulating states. Near charge neutrality, we find a previously unidentified
correlated regime featuring a substantially enhanced flat band splitting that
we describe within a microscopic model predicting a strong tendency towards
nematic ordering. Our results provide insights into symmetry breaking
correlation effects and highlight the importance of electronic interactions for
all filling factors in twisted bilayer graphene.Comment: Main text 9 pages, 4 figures; Supplementary Information 25 page
- …