95 research outputs found

    Mutations at the Subunit Interface of Yeast Proliferating Cell Nuclear Antigen Reveal a Versatile Regulatory Domain

    Get PDF
    Acknowledgments We thank Szilvia Minorits for technical assistance. I.U. conceived and designed the project and wrote the manuscript. All authors participated in designing and performing the experiments, and analyzing the results. The authors declare no competing financial interests. This work was also supported by a grant from the National Research, Development and Innovation Office GINOP-2.3.2-15-2016-00001. Funding: This work was supported by Hungarian Science Foundation Grant OTKA 109521 and National Research Development and Innovation Office GINOP-2.3.2-15-2016-00001. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds

    Get PDF
    © Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds

    The Retinoic Acid Receptor Beta (Rarb) Region of Mmu14 Is Associated with Prion Disease Incubation Time in Mouse

    Get PDF
    In neurodegenerative conditions such as Alzheimer's and prion disease it has been shown that host genetic background can have a significant effect on susceptibility. Indeed, human genome-wide association studies (GWAS) have implicated several candidate genes. Understanding such genetic susceptibility is relevant to risks of developing variant CJD (vCJD) in populations exposed to bovine spongiform encephalopathy (BSE) and understanding mechanisms of neurodegeneration. In mice, aspects of prion disease susceptibility can be modelled by examining the incubation period following experimental inoculation. Quantitative trait linkage studies have already identified multiple candidate genes; however, it is also possible to take an individual candidate gene approach. Rarb and Stmn2 were selected as candidates based on the known association with vCJD. Because of the increasing overlap described between prion and Alzheimer's diseases we also chose Clu, Picalm and Cr1, which were identified as part of Alzheimer's disease GWAS. Clusterin (Clu) was considered to be of particular interest as it has already been implicated in prion disease. Approximately 1,000 heterogeneous stock (HS) mice were inoculated intra-cerebrally with Chandler/RML prions and incubation times were recorded. Candidate genes were evaluated by sequencing the whole transcript including exon-intron boundaries and potential promoters in the parental lines of the HS mice. Representative SNPs were genotyped in the HS mice. No SNPs were identified in Cr1 and no statistical association with incubation time was seen for Clu (P=0.96) and Picalm (P=0.91). Significant associations were seen for both Stmn2 (P=0.04) and Rarb (P=0.0005), however, this was only highly significant for Rarb. This data provides significant further support for a role for the Rarb region of Mmu14 and Stmn2 in prion disease

    Characterisation of CorGlaes (R) Pure 107 fibres for biomedical applications

    Get PDF
    A degradable ultraphosphate (55 mol % P2O5) quinternary phosphate glass composition has been characterised in terms of its chemical, mechanical and degradation properties both as a bulk material and after drawing into fibres. This glass formulation displayed a large processing window simplifying fibre drawing. The fibres displayed stiffness and strength of 65.5 ± 20.8 GPa and 426±143 MPa. While amorphous discs of the glass displayed a linear dissolution rate of 0.004 mg cm−2 h−1 at 37 °C, in a static solution with a reduction in media pH. Once drawn into fibres, the dissolution process dropped the pH to <2 in distilled water, phosphate buffer saline and corrected-simulated body fluid, displaying an autocatalytic effect with >90 % mass loss in 4 days, about seven times faster than anticipated for this solution rate. Only cell culture media was able to buffer the pH taking over a week for full fibre dissolution, however, still four times faster dissolution rate than as a bulk material. However, at early times the development of a HCA layer was seen indicating potential bioactivity. Thus, although initial analysis indicated potential orthopaedic implant applications, autocatalysis leads to accelerating degradation in vitro
    corecore