
The Retinoic Acid Receptor Beta (Rarb) Region of Mmu14
Is Associated with Prion Disease Incubation Time in
Mouse
Julia Grizenkova, Shaheen Akhtar, John Collinge, Sarah E. Lloyd*

MRC Prion Unit and Department of Neurodegenerative Diseases, UCL Institute of Neurology, University College, London, United Kingdom

Abstract

In neurodegenerative conditions such as Alzheimer’s and prion disease it has been shown that host genetic background can
have a significant effect on susceptibility. Indeed, human genome-wide association studies (GWAS) have implicated several
candidate genes. Understanding such genetic susceptibility is relevant to risks of developing variant CJD (vCJD) in
populations exposed to bovine spongiform encephalopathy (BSE) and understanding mechanisms of neurodegeneration. In
mice, aspects of prion disease susceptibility can be modelled by examining the incubation period following experimental
inoculation. Quantitative trait linkage studies have already identified multiple candidate genes; however, it is also possible
to take an individual candidate gene approach. Rarb and Stmn2 were selected as candidates based on the known
association with vCJD. Because of the increasing overlap described between prion and Alzheimer’s diseases we also chose
Clu, Picalm and Cr1, which were identified as part of Alzheimer’s disease GWAS. Clusterin (Clu) was considered to be of
particular interest as it has already been implicated in prion disease. Approximately 1,000 heterogeneous stock (HS) mice
were inoculated intra-cerebrally with Chandler/RML prions and incubation times were recorded. Candidate genes were
evaluated by sequencing the whole transcript including exon-intron boundaries and potential promoters in the parental
lines of the HS mice. Representative SNPs were genotyped in the HS mice. No SNPs were identified in Cr1 and no statistical
association with incubation time was seen for Clu (P = 0.96) and Picalm (P = 0.91). Significant associations were seen for both
Stmn2 (P = 0.04) and Rarb (P = 0.0005), however, this was only highly significant for Rarb. This data provides significant
further support for a role for the Rarb region of Mmu14 and Stmn2 in prion disease.
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Introduction

Prion diseases, also known as transmissible spongiform enceph-

alopathies, are fatal neurodegenerative disorders of both humans

and animals. They include Creutzfeldt-Jakob disease (CJD) in

humans, bovine spongiform encephalopathy (BSE) in cattle and

scrapie in sheep [1]. They are characterized by prolonged

incubation periods and distinctive neuropathology that includes

deposition of an abnormal form of the prion protein (PrPSc),

spongiform change, gliosis and neuronal loss.

Human prion diseases may be described as inherited, sporadic or

acquired. Inherited prion disease accounts for ,15% of human

prion disease and is caused by mutations in the prion gene (PRNP).

Sporadic CJD accounts for ,85% of human prion diseases and has

no known cause. Prion diseases are also transmissible (acquired) and

include iatrogenic diseases that have occurred through medical

interventions such as neurosurgery and exposure to contaminated

pituitary hormone preparations. Other human acquired diseases

include kuru, which was restricted to the Fore region of Papua New

Guinea and was transmitted through cannibalistic mortuary feasts.

Following the BSE epidemic in the UK a new human prion disease,

variant CJD (vCJD), was recognised as an acquired prion disease

cause by exposure to BSE-contaminated material. Different

phenotypes may be explained by the existence of multiple prion

strains which in experimental animals may be distinguished by their

characteristic incubation times, neuropathology and biochemistry.

Susceptibility to prion diseases may be determined by many

factors including genetic background. In human disease, the

strongest genetic susceptibility factor occurs at a common variant

within the prion protein (PrP) itself at codon 129 (M129V) [2–6].

In mice, aspects of prion disease susceptibility can be modelled

using incubation time as a quantitative trait. As with human

disease, the main genetic determinant of incubation time in mouse

is variation in the prion gene, Prnp, where Prnpa (108-Leu, 189-

Thr) and Prnpb (108-Phe, 189-Val) are associated short and long

incubation times respectively [7–10]. Although PRNP plays a

major role in genetic susceptibility, it has long been suspected that

other genes also contribute to the observed natural variation. The

first human genome wide association study (GWAS) for variant

CJD (vCJD) confirmed this by implicating an additional two

independent genetic loci [6]. In mice, quantitative trait locus

(QTL) mapping studies have also successfully identified multiple

loci across the genome that influence incubation time [11–15].

The GWAS study of Mead et al found a genome-wide significant

association between vCJD and the SNP rs6794719 which maps

upstream of the gene RARB (retinoic acid receptor beta) on
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chromosome 3 (P = 1.961027). This was replicated in a small

sample of patients with iatrogenic CJD (P = 0.03) but not with

sporadic CJD or kuru. A SNP upstream of STMN2 (stathmin-like

2, the gene that encodes SCG10), rs1460163, on chromosome 8,

was also associated with vCJD, although this did not reach the

threshold for genome-wide significance (P = 5.661025). The

rs1460163 finding was not replicated in sporadic CJD, however,

an association was seen with kuru incubation time (p = 0.017) and

resistance to kuru (p = 2.561024). A standard approach for

GWAS is to seek replication of these data in an independent

cohort of vCJD patients, however, the rarity of the disease

prohibits this and alternative methods must be sought.

We have previously used a heterogeneous stock (HS) of mice

inoculated with RML mouse adapted scrapie prions to fine map

and identify prion disease incubation time candidate genes

[16,17]. This resource can also be used in a genome-wide

association study or to look at individual candidate genes [18]. We

therefore selected Rarb and Stmn2 as candidate genes to see

whether we could verify the vCJD data in our mouse model.

The commoner neurodegenerative diseases, such as Alzheimer’s

disease (AD) also involve accumulation of misfolded proteins and it

is increasingly recognised that prion-like mechanisms may be

relevant in their pathogenesis [19]. Genes affecting protein

homeostasis may therefore be generically involved in neurode-

generative diseases. In addition, there is evidence for a direct role

of the prion protein in AD pathogenesis [20]. It is therefore

reasonable to propose that susceptibility genes for AD may also be

relevant for prion diseases. Two large GWAS for AD have

identified CLU, PICALM and CR1 as susceptibility genes [21,22].

Clusterin (Clu) was considered to be of particular interest as it has

already been implicated in prion disease in that it has been shown

to bind PrP and co-localise with PrPSc in plaques [23,24]. Further,

a Clusterin knockout mouse model shows an increase in

incubation time following inoculation with BSE prions [25]. We

therefore also included the mouse orthologs of the AD

susceptibility genes in our association study in the HS mice. To

further verify our candidate genes we also looked at mRNA

expression levels by real time RT-PCR in both normal and end-

stage RML prion-infected mice.

Materials and Methods

Mice
Northport HS mice were supplied by R. Hitzemann (Portland,

Oregon, USA). These were provided as 28 pairs at generation 35.

The offspring were mated semi-randomly, avoiding shared

grandparents, to obtain 49 mating pairs. Offspring from these

pairs (generation 37) were phenotyped for prion disease incubation

time (n = 1052). Inbred lines of mice were obtained from Harlan,

UK (Bicester, UK) with the exception of RIIIS/J and C57BL/6J

which were obtained from the Jackson Laboratory (Bar Harbor,

Maine, USA).

Prion inoculation and phenotyping
Mice were anaesthetized with isofluorane/O2 and inoculated

intra-cerebrally into the right parietal lobe with 30ml Chandler/

RML prions as previously described [11]. Mice were examined

daily for clinical signs of prion disease and were culled once a

definitive diagnosis had been made. Criteria for defining scrapie in

mice were as previously described [26]. Incubation time was

defined as the number of days from inoculation to the onset of

clinical signs. All procedures were conducted in accordance with

institutional, UK and international regulations and standards on

animal welfare. Ethical approval was granted by the MRC Prion

Unit ethics committee and carried out under UK Home Office

licence PPL70/6454.

PCR and sequencing
DNA for each of the heterogeneous stock parental lines was

obtained from the Jackson Laboratory (Bar Harbor, Maine, USA).

PCR and sequencing reactions were carried out as previously

described [17] and run either on a MegaBACE1000 (Amersham

Biosciences) or 3730 capillary sequencer (Applied Biosystems).

Genotyping
DNA was extracted from the HS cross mice as previously

described [17]. SNP genotyping was carried out using the Allelic

Discrimination function on a 7500 Fast Real-time PCR machine

(Applied Biosystems) using RoxMegaMix Gold (Microzone, Ltd)

as previously described [17] Primers and probes are shown in

Table S2 in File S1.

Real-time RT-PCR
RNA was extracted from whole brains from either uninfected

(6–8 weeks old) or RML prion-infected terminally sick mice and

reverse transcribed using AMV reverse transcriptase and random

primers as previously described [26]. Control reactions were

carried out with no reverse-transcription for each sample to ensure

no genomic DNA contamination of the RNA preparation. Real-

time RT-PCR reactions were carried out on a 7500 Fast Real-time

PCR System (Applied Biosystems) as previously described [26]. All

gene specific probes were duplexed in turn with each of three

endogenous controls (GAPDH, b-actin and Thy-1 [17]. All reactions

were carried out in triplicate. See Table S5 in File S1 for primer

and probe details.

Statistical analysis
All genotyping data were analysed using the Kruksal-Wallis

non-parametric ANOVA (genotypes) and the allelic test used was

the Mann-Whitney test. For quantitative RT-PCR all data passed

a normality test and was therefore statistically evaluated using a

two-tailed t-test.

Results

Mmu14 association study
The vCJD GWAS of Mead et al identified a significant

association with the SNP rs6794719 on HSA 3 [6]. RARB was

reported to be the nearest gene, although the SNP is not in linkage

disequilibrium with the coding region. We therefore chose Rarb as

a candidate gene for an association study in a mouse heteroge-

neous stock. As previously described, we used the Northport HS

which is generated from the parental lines A/J, AKR/J, BALB/cJ,

C3H/HeJ, C57BL/6J, CBA/J, DBA/2J and LP/J [16,17,27].

Incubation times following intra-cerebral inoculation with Chan-

dler/RML prions were collected for n = 1052 mice at generation

37. The incubation times conformed to a normal distribution

(Anderson-Darling Normality test) with a mean of 147615 (s.d.)

with a range of 103–229 days [16].

In order to identify polymorphisms for genotyping, and

determine whether these may be of functional significance, we

sequenced Rarb in the HS parental lines. Sequencing was not

exhaustive but included the open reading frame, exon-intron

boundaries, untranslated regions and regions predicted by

PROSCAN to contain promoter elements (http://www-bimas.

cit.nih.gov/molbio/proscan). Eleven polymorphisms were identi-

fied, mostly in intronic or untranslated regions (Table S1 in File

S1). One polymorphism (A/C) was identified in exon 3, however,

Rarb and Prion Disease Incubation Time
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this did not result in an amino acid change (R107R). Ten of the

eleven polymorphisms, including R107R, represent the same

strain distribution pattern (allele A = A, AKR, BALB, C57; allele

C = C3H, CBA, DBA, LP) (Table 1, Table S1 in File S1). We

therefore selected the R107R SNP for genotyping, in the HS mice,

as a representative of this strain distribution pattern. This was

confined to the extreme 20% of both ends of the incubation time

distribution (approximately n = 400) as this contains most of the

power available in the cross (Table S2 in File S1) [28,29].

Genotypic data were analysed by the Kruksal-Wallis non-

parametric ANOVA and showed a highly significant association

with prion disease incubation time (P = 0.0005), where the AA

genotype was associated with a short incubation time (14261.7)

and the CC genotype with a longer incubation time (15264.0). An

allelic test (Mann-Whitney) also showed a highly significant

association (P = 0.0002) (Table 2, Table S3 and S4 in File S1).

Further interrogation of the public databases showed that

although RARB transcripts mapped within approximately 0.4Mb

of rs6794719, another gene, THRB (thyroid hormone receptor

beta), mapped within 0.3Mb (http://genome.ucsc.edu/ February

2009 (GRCh37/hg19) assembly). The resolution of the HS cross at

generation 37 is approximately 1–2cM which generally precludes

mapping to the level of an individual gene, however, analysis of

strain distribution patterns may allow a more detailed view of

individual associations. The gene order of the HSA3 RARB –

THRB locus is also conserved in mouse (Mmu14) therefore we also

analysed Thrb in our cross. Sequencing the HS parental lines was

carried out as described for Rarb. Forty six polymorphisms were

identified most of which were in non-coding regions (Table S1 in

File S1). Forty two of these displayed the same strain distribution

as seen for Rarb (allele 1 = A, AKR, BALB, C57; allele 2 = C3H,

CBA, DBA, LP) (Table 1). This conservation of strain distribution

pattern across both genes suggests that the Rarb-Thrb region of

Mmu14 is linked in this cross and will not enable us to distinguish

between the contribution of individual genes. To test this

hypothesis, we genotyped SNP THRBX6 V384V (Table S1 and

S2 in File S1) as a representative of this strain distribution pattern.

Statistical analysis showed a highly significant association between

Thrb and prion incubation time with a genotype association of

P = 0.0013 and an allelic association of P = 0.0005 (Table 2 and

Table S3 and S4 in File S1). Thus, we conclude that the Rarb-Thrb

region of Mmu14 shows a highly significant association with prion

disease incubation time in mice, however, we are unable to

separate the effect of both genes due to their physical proximity.

Rarb mRNA expression
No coding changes were observed in the Rarb ORF and no clear

functions were obviously associated with the non-coding SNPs,

therefore, we looked at Rarb mRNA expression levels in mouse

brains from the parental lines of the HS (except LP) to see whether

expression level could be associated with genotype. mRNA was

prepared from whole brains of 6–8 week old mice and Rarb

transcripts were quantified using real-time RT-PCR (Table S5 in

File S1). Expression levels varied between the inbred lines

(Figure 1A), however, when the data were grouped according to

RARBX3 R107R genotype (A/C) no significant differences were

seen (P = 0.87) (Figure 1B). We also compared expression levels in

brains taken from animals at end stage prion disease (Chandler/

RML) and uninfected controls. Samples were compared across two

different inbred lines of mice (C57BL/6J and RIIIS/J) that

represent both ‘‘long’’ and ‘‘short’’ incubation times respectively.

For both lines, an approximately two-fold increase in expression

level was observed in infected animals (P = 3.061026, P = 3.161025

for C57BL/6J and RIIIS/J respectively) (Figure 1C). This contrasts

to the findings of Mead et al, that showed no difference in Rarb

expression levels between uninfected and infected mouse neuronal

(GT-1) cells in a microarray study [6]. Because no allele-specific

expression differences were detected for Rarb, we carried out a

similar study for Thrb to see if this could be used as a means of

distinguishing between the two genes. As observed for Rarb,

expression levels varied between inbred lines, however, when

grouped by the genotype of SNP THRBX6 V384V (G/A) no

significant differences were seen (P = 0.3554) (Figure S1A and S1B

in File S1). Similarly, an approximately two-fold increase in

expression level was seen in infected animals (P = 4.061025,

P = 7.761024 for C57BL/6J and RIIIS/J respectively) (Figure

S1C in File S1). Thus, mRNA expression analysis of Rarb and Thrb

was unable to distinguish between the two candidate genes.

Stmn2 association study
Mead et al also reported an association between vCJD and SNP

rs1460163 which is located within 0.3Mb of the gene STMN2 [6].

Although the association with rs1460163 was replicated in kuru, the

Table 1. Major strain distribution pattern for HS mice.

Genes Strain distribution pattern Comment

Rarb (A, AKR, BALB, C57) (C3H, CBA,
DBA, LP)

Exon 3, intronic and 39UTR

Thrb (A, AKR, BALB, C57) (C3H, CBA,
DBA, LP)

Exon 6, intronic and 39UTR

Stmn2 (A, BALB, C3H, CBA) (AKR, C57,
DBA, LP)

39UTR

Clu (A, AKR, BALB, CBA) (C3H, C57,
DBA, LP)

Intronic

Picalm (A, AKR, BALB) (C3H, C57, CBA,
DBA, LP)

Intronic

(A, AKR, BALB, C3H, CBA, DBA,
LP) (C57)

Exon 11, intronic
and 39UTR

doi:10.1371/journal.pone.0015019.t001

Table 2. SNP genotyping in HS mice.

Gene Polymorphism
Genotypic test
p-value (n)

Allelic test
p-value

Rarb Exon 3 R107R A/C
rs48898775

0.0005 (379) 0.0002

Thrb Exon 6 V384V G/A
rs16822230

0.0013 (399) 0.0005

Stmn2 Exon 5 39UTR G/A
rs4223708

0.0432 (396) 0.0129

Clu Intron 8 C/G
rs31071599

0.96 (400) 0.79

Picalm Intron 9 G/A
rs31101448

0.91 (368) 0.74

Picalm Exon 11 I374I A/G
rs32273942

0.67 (394) 0.54

All polymorphisms were analysed by allele discrimination using a 7500 Fast real
time PCR system (Applied Biosystems). For probe details see Table S2 in File S1.
For all genotypes, the statistical test used was the Kruksal-Wallis non-parametric
ANOVA. The allelic test used was the Mann-Whitney test. dbSNP identifiers are
provided with the polymorphism descriptions. Approximately 400 samples
were genotyped for each SNP however, the precise number for which
genotypes were collected varied due to random technical failure.
doi:10.1371/journal.pone.0015019.t002

Rarb and Prion Disease Incubation Time
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association in vCJD did not reach the threshold for genome-wide

significance. We therefore sought to investigate these findings by

carrying out an association study with Stmn2 in our HS mice as

described for Rarb and Thrb. Sequencing the parental lines revealed

only 3 SNPs all of which were in the 39UTR and represented the

same strain distribution pattern (Table 1 and Table S1 in File S1)

(allele 1 = A, BALB, C3H, CBA; allele 2 = AKR, C57, DBA, LP).

SNP STMN3U1 (Table S1 in File S1) was selected as a

representative SNP for genotyping in the HS mice (Table S2 in

File S1). Genotype data reached a nominal level of significance

(P = 0.04) where the GG genotype (allele 2) was associated with a

short incubation time (14461.6) and the AA genotype (allele 1) with

a longer incubation time (14663.3). The heterozygotes showed a

longer incubation time of (14861.9) however, this is not statistically

significant. The allelic test also showed a significant association

(P = 0.0129) (Table 2, and Table S3 and S4 in File S1).

Stmn2 mRNA expression
The human GWAS results for STMN2 were partly corrobo-

rated by microarray data showing a 30-fold decrease in Stmn2

expression in prion-infected mouse neuronal cells (GT-1) relative

to uninfected cells [6]. Although prion-infected cell lines are a

useful model they may not represent the in vivo situation in the

mouse brain. We therefore compared Stmn2 mRNA expression

levels in uninfected and at end stage Chandler/RML prion-

infected mouse brains by real time RT-PCR. (Table S5 in File

S1). In contrast to the results seen in GT-1 cells, expression in

C57BL/6J RML prion-infected brains was significantly increased

(P = 2.061026). However, this finding may be specific to the

C57BL/6J genetic background as no significant difference was

seen for RIIIS/J (P = 0.08) (Figure 2). No significant difference

was observed in uninfected mouse brains between the two inbred

lines (P = 0.12).

Clu, Picalm and Cr1 association study
To test whether AD susceptibility genes are also quantitative

trait genes for prion disease incubation time in mice we analysed

Clu, Picalm and Cr1 in our HS mice as described above [21,22].

No polymorphisms were found for Cr1 therefore we were unable

to proceed with any further analysis. One intronic SNP was

identified in Clu, which was used for genotyping in the HS mice

(Table S1 and S2 in File S1). No significant association with prion

disease incubation time was seen for either genotypic (P = 0.96) or

allelic data (P = 0.79) (Table 2 and Table S3 and S4 in File S1).

Seventeen polymorphisms were found in Picalm one of which was

a synonymous change in exon 11 (I374I) (Table S1 in File S1).

Two major strain distribution patterns were identified (Table 1),

therefore both of these were tested by genotyping in the HS mice

(Table S2 in File S1). The representative SNPs tested were from

Figure 1. Rarb mRNA expression in mouse brain. Quantification of
Rarb mRNA expression in whole brain by real-time RT-PCR. cDNA was
prepared from the whole brains of uninfected 6–8 week old male mice
or mice at the terminal stages of prion disease (Chandler/RML
inoculated). N = 6 for all groups and samples were run in triplicate. All
samples were duplexed for Rarb (Fam-label) and an endogenous
control GAPDH, b-actin or Thy-1 (Vic-label). Expression level is expressed
in arbitrary units as normalised by the geometric mean of the quantity
of the endogenous controls (y-axis). Error bars represent the standard
error of the mean. A. Rarb mRNA expression level for parental strain of
the HS mice (except LP). B. Rarb mRNA expression level grouped by
allele at SNP RARBX3 R107R (A/C) (A = A, AKR, BALB, C57; C = C3H, CBA,
DBA). No significant difference was observed between the groups
(P = 0.87) C. Comparison of Rarb mRNA levels in uninfected (dark bars)
and mice at the terminal stage of disease (light bars). Significant
differences are seen between normal and terminally sick mice
(P = 3.061026 and P = 3.161025 for C57BL/6 and RIIIS/J respectively).
doi:10.1371/journal.pone.0015019.g001

Figure 2. Stmn2 mRNA expression in mouse brain. Comparison
of Stmn2 brain mRNA expression between uninfected and prion-
infected mice at the terminal stage of disease (Chandler/RML
inoculated) by real-time RT-PCR. N = 6 for all groups and samples were
run in triplicate. All samples were duplexed for Rarb (Fam-label) and an
endogenous control GAPDH, b-actin or Thy-1 (Vic-label). Expression level
is expressed in arbitrary units as normalised by the geometric mean of
the quantity of the endogenous controls (y-axis). Error bars represent
the standard error of the mean. Dark grey and white bars represent
uninfected and infected mice respectively. A significant difference is
seen between normal and terminally sick mice for C57BL/6J
(P = 2.061026) but not for RIIIS/J (P = 0.08).
doi:10.1371/journal.pone.0015019.g002

Rarb and Prion Disease Incubation Time
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intron 9 and exon 11. No significant association for prion disease

incubation time was seen for either SNP by genotype or allele

(Table 2 and Table S3 and S4 in File S1).

Discussion

Human GWAS studies in neurodegenerative diseases have

now identified multiple susceptibility loci. However, a major

challenge is to validate these data [6,21,22,30]. The first step is

usually to conduct large-scale replication studies in independent

cohorts, but this is not possible with a rare disease such as vCJD.

We therefore sought to replicate these findings in an alternative

system. Failure to replicate human susceptibility factors in mouse

may however occur for several reasons, including prion strain

differences and the fact that the mouse model we are using here

only looks at one aspect of susceptibility, incubation time

following intra-cerebral challenge. However, unlike other neuro-

degenerative diseases, mice are naturally susceptible to prion

disease and recapitulate the neuropathology of human disease. In

comparing genes identified in vCJD patients and RML

inoculated mice we are aware that there may be several

susceptibility genes that are not shared, however, our ultimate

goal is to identify genes that influence the fundamental processes

in prion disease which we would expect to be shared across all

strains. Additionally, the remarkable consistency of prion

incubation periods within an inbred mouse lines provides a

powerful model to map relevant genes [11]. Hectd2 is an example

of a susceptibility gene first identified in mouse that is also

associated with the human diseases vCJD and kuru [16].

Although Mead et al highlighted RARB as being the closest gene

to rs6794719, THRB also maps within 0.5Mb. We have shown a

significant association of the Rarb-Thrb locus with prion disease

incubation time thereby validating the human GWAS data. Due

to the resolution available in the HS mice we were unable to

distinguish between the effect of the two candidate genes. Based on

previous reports, Rarb appears to be the most promising candidate.

Thrb has not previously been associated with prion disease

although thyroid stimulating hormone has been implicated in

PrP mRNA expression [31]. Retinoic acid, the Rarb ligand, has

been shown to regulate the Prnp promoter, influence PrPc (cellular

PrP) levels and cause an increase in PrPres (proteinase K resistant

abnormal isoform of PrP) accumulation in ScN2a cells [32,33].

No Rarb coding variants were detected by sequencing. One

polymorphism was a synonymous change in the ORF, R107R.

Other polymorphisms were intronic or in untranslated regions

with no ascribed function. Our sequencing was not exhaustive

therefore it is possible that these SNPs do not represent the

functional variants but are acting as markers for functional

polymorphisms that were not identified by our sequencing. While

our expression study did not detect any significant difference

associated with genotype, subtle differences may be masked by the

effect of other regulators, possibly on other chromosomes and by

the effects of multiple cell types present in whole brain samples.

Some significant differences were seen between strains suggesting

that other cis-acting loci are involved in the overall gene expression

level.

Our analysis does not rule out the possibility of allele-specific

effects on splicing and other regulatory events.

Although STMN2 did not reach the threshold for genome-wide

significance in the human vCJD GWAS study, supporting

evidence was provided from replication in the acquired prion

disease from Papua New Guinea, kuru [6]. Similarly, in the HS

mice, Stmn2 gave a significant association with prion disease

incubation time (P = 0.04). A level of significance across a range of

studies representing different hosts and prions strains suggests that

Stmn2 may well be worthy of further investigation.

In mouse brain, we have shown that Rarb, Thrb and Stmn2 are

significantly increased in prion-infected as compared to uninfected

animals although for Stmn2 this effect was not replicated in RIIIS/

J mice. This is in contrast to the data reported for prion infected

GT-1 cells where no difference was seen for Rarb and a 30-fold

decrease was shown for Stmn2 [6]. It is likely that this reflects the

difference between prion propagation in vitro in an immortalised

single cell line and the situation in vivo at end-stage disease where

cells of different types are present, neurons are terminally

differentiated and undergoing substantial stress leading to death.

The use of end-stage brains where significant pathology is present

may mask the level of up or down regulation. In this study we

compared terminally sick mice to 6–8 week old mice therefore we

cannot exclude the possibility that some of the observed changes

may also be age related. In addition, there may be differences due

to genetic background as GT-1 cells are derived from transgene

induced hypothalamic neuronal tumours in mice generated from

F2 C57BL/6J6BALB/cJ embryos [34].

The increasingly apparent mechanistic overlap between neuro-

degenerative diseases suggested that susceptibility genes found in

AD GWAS may also be relevant to prion disease. Although Picalm

and Cr1 have not previously been implicated in prion disease there

is ample evidence to suggest that clusterin may be involved

[23,24]. Data showing that a clusterin knockout mouse inoculated

with BSE prions has a significantly increased incubation time

suggested that Clu was a particularly good candidate quantitative

trait gene for prion disease incubation time [25]. Although

previous data clearly implicates clusterin in prion disease, our data

show that it does not contribute to the natural variation observed

in the RML model of mouse incubation time. It is possible that the

effect of clusterin on incubation may be prion strain specific and

an association may be seen with other strains particularly BSE.

Our data provides significant further evidence to support a role for

the Rarb genetic locus in prion disease and provides some

supporting evidence that Stmn2 may also be implicated. Functional

assessment of both genes will be required to confirm these genetic

data.
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