1,156 research outputs found

    Determinants of adults' intention to vaccinate against pandemic swine flu

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.This article has been made available through the Brunel Open Access Publishing Fund.Background: Vaccination is one of the cornerstones of controlling an influenza pandemic. To optimise vaccination rates in the general population, ways of identifying determinants that influence decisions to have or not to have a vaccination need to be understood. Therefore, this study aimed to predict intention to have a swine influenza vaccination in an adult population in the UK. An extension of the Theory of Planned Behaviour provided the theoretical framework for the study. Methods: Three hundred and sixty two adults from the UK, who were not in vaccination priority groups, completed either an online (n = 306) or pen and paper (n = 56) questionnaire. Data were collected from 30th October 2009, just after swine flu vaccination became available in the UK, and concluded on 31st December 2009. The main outcome of interest was future swine flu vaccination intentions. Results: The extended Theory of Planned Behaviour predicted 60% of adults’ intention to have a swine flu vaccination with attitude, subjective norm, perceived control, anticipating feelings of regret (the impact of missing a vaccination opportunity), intention to have a seasonal vaccine this year, one perceived barrier: “I cannot be bothered to get a swine flu vaccination” and two perceived benefits: “vaccination decreases my chance of getting swine flu or its complications” and “if I get vaccinated for swine flu, I will decrease the frequency of having to consult my doctor,” being significant predictors of intention. Black British were less likely to intend to have a vaccination compared to Asian or White respondents. Conclusions: Theoretical frameworks which identify determinants that influence decisions to have a pandemic influenza vaccination are useful. The implications of this research are discussed with a view to maximising any future pandemic influenza vaccination uptake using theoretically-driven applications.This article is available through the Brunel Open Access Publishing Fund

    The Nature of Attachment Relationships and Grief Responses in Older Adults: An Attachment Path Model of Grief

    Get PDF
    BACKGROUND: Various researchers have theorized that bereaved adults who report non-secure attachment are at higher risk of pathological grief. Yet past findings on avoidant attachment representations and grief have yielded limited and contradictory outcomes. Little research has been conducted with older adults to identify the psychological processes that mediate between self-reported attachment representations and the patterns of grief. OBJECTIVE: To examine the impacts of avoidant attachment and anxious attachment dimensions on emotion and non-acceptance, in response to the loss of a conjugal partner, and the mediating effect of yearning thoughts. DESIGN: Men (N = 21) and women (N = 68) aged 60 years and above who had lost a partner within the last 12 to 72 months were invited to participate. Participants rated their levels of yearning thoughts about the deceased, emotions and non-acceptance on the Texas Revised Inventory of Grief (TRIG-Present), and their type and level of general romantic attachment on the Experiences In Close Relationship questionnaire (ECR). RESULTS: Structural equation modelling (SEM) indicated that individuals who reported higher levels of avoidant attachment reported less emotional responses and less non-acceptance. SEM also showed that individuals who reported higher levels of anxious attachment reported greater emotional responses and greater non-acceptance. SEM further indicated that these relationships were mediated by yearning thoughts. CONCLUSION: People adopt different grief coping patterns according to their self-reported attachment representations, with the nature of their yearning thoughts influencing the process. Grief therapy may be organized according to individual differences in attachment representations

    High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor

    Get PDF
    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structurefunction relationship of GPCRs. © 2014 Bill et al

    Structure of the hDmc1-ssDNA filament reveals the principles of its architecture

    Get PDF
    In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination

    Potential therapeutic implications of new insights into respiratory syncytial virus disease

    Get PDF
    Viral bronchiolitis is the most common cause of hospitalization in infants under 6 months of age, and 70% of all cases of bronchiolitis are caused by respiratory syncytial virus (RSV). Early RSV infection is associated with respiratory problems such as asthma and wheezing later in life. RSV infection is usually spread by contaminated secretions and infects the upper then lower respiratory tracts. Infected cells release proinflammatory cytokines and chemokines, including IL-1, tumor necrosis factor-α, IL-6, and IL-8. These activate other cells and recruit inflammatory cells, including macrophages, neutrophils, eosinophils, and T lymphocytes, into the airway wall and surrounding tissues. The pattern of cytokine production by T lymphocytes can be biased toward 'T-helper-1' or 'T-helper-2' cytokines, depending on the local immunologic environment, infection history, and host genetics. T-helper-1 responses are generally efficient in antiviral defense, but young infants have an inherent bias toward T-helper-2 responses. The ideal intervention for RSV infection would be preventive, but the options are currently limited. Vaccines based on protein subunits, live attenuated strains of RSV, DNA vaccines, and synthetic peptides are being developed; passive antibody therapy is at present impractical in otherwise healthy children. Effective vaccines for use in neonates continue to be elusive but simply delaying infection beyond the first 6 months of life might reduce the delayed morbidity associated with infantile disease

    Glucocorticoid receptor gene polymorphisms associated with progression of lung disease in young patients with cystic fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The variability in the inflammatory burden of the lung in cystic fibrosis (CF) patients together with the variable effect of glucocorticoid treatment led us to hypothesize that <it>glucocorticoid receptor </it>(<it>GR</it>) gene polymorphisms may affect glucocorticoid sensitivity in CF and, consequently, may contribute to variations in the inflammatory response.</p> <p>Methods</p> <p>We evaluated the association between four <it>GR </it>gene polymorphisms, <it>TthIII</it>, <it>ER22/23EK</it>, <it>N363S </it>and <it>BclI</it>, and disease progression in a cohort of 255 young patients with CF. Genotypes were tested for association with changes in lung function tests, infection with <it>Pseudomonas aeruginosa </it>and nutritional status by multivariable analysis.</p> <p>Results</p> <p>A significant non-corrected for multiple tests association was found between <it>BclI </it>genotypes and decline in lung function measured as the forced expiratory volume in one second (FEV<sub>1</sub>) and the forced vital capacity (FVC). Deterioration in FEV<sub>1 </sub>and FVC was more pronounced in patients with the <it>BclI </it>GG genotype compared to the group of patients with <it>BclI </it>CG and CC genotypes (p = 0.02 and p = 0.04 respectively for the entire cohort and p = 0.01 and p = 0.02 respectively for F508del homozygous patients).</p> <p>Conclusion</p> <p>The <it>BclI </it>polymorphism may modulate the inflammatory burden in the CF lung and in this way influence progression of lung function.</p

    Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

    Get PDF
    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions

    Problem and Pathological Gambling in a Sample of Casino Patrons

    Get PDF
    Relatively few studies have examined gambling problems among individuals in a casino setting. The current study sought to examine the prevalence of gambling problems among a sample of casino patrons and examine alcohol and tobacco use, health status, and quality of life by gambling problem status. To these ends, 176 casino patrons were recruited by going to a Southern California casino and requesting that they complete an anonymous survey. Results indicated the following lifetime rates for at-risk, problem, and pathological gambling: 29.2, 10.7, and 29.8%. Differences were found with regards to gambling behavior, and results indicated higher rates of smoking among individuals with gambling problems, but not higher rates of alcohol use. Self-rated quality of life was lower among pathological gamblers relative to non-problem gamblers, but did not differ from at-risk or problem gamblers. Although subject to some limitations, our data support the notion of higher frequency of gambling problems among casino patrons and may suggest the need for increased interventions for gambling problems on-site at casinos

    A tool for examining the role of the zinc finger myelin transcription factor 1 (Myt1) in neural development: Myt1 knock-in mice

    Get PDF
    The Myt1 family of transcription factors is unique among the many classes of zinc finger proteins in how the zinc-stabilized fingers contact the DNA helix. To examine the function of Myt1 in the developing nervous system, we generated mice in which Myt1 expression was replaced by an enhanced Green Fluorescent Protein fused to a Codon-improved Cre recombinase as a protein reporter. Myt1 knock-in mice die at birth, apparently due to improper innervation of their lungs. Elimination of Myt1 did not significantly affect the number or distribution of neural precursor cells that normally express Myt1 in the embryonic spinal cord. Nor was the general pattern of differentiated neurons altered in the embryonic spinal cord. The Myt1 knock-in mice should provide an important tool for identifying the in vivo targets of Myt1 action and unraveling the role of this structurally distinct zinc finger protein in neural development

    The Typical Flight Performance of Blowflies: Measuring the Normal Performance Envelope of Calliphora vicina Using a Novel Corner-Cube Arena

    Get PDF
    Despite a wealth of evidence demonstrating extraordinary maximal performance, little is known about the routine flight performance of insects. We present a set of techniques for benchmarking performance characteristics of insects in free flight, demonstrated using a model species, and comment on the significance of the performance observed. Free-flying blowflies (Calliphora vicina) were filmed inside a novel mirrored arena comprising a large (1.6 m1.6 m1.6 m) corner-cube reflector using a single high-speed digital video camera (250 or 500 fps). This arrangement permitted accurate reconstruction of the flies' 3-dimensional trajectories without the need for synchronisation hardware, by virtue of the multiple reflections of a subject within the arena. Image sequences were analysed using custom-written automated tracking software, and processed using a self-calibrating bundle adjustment procedure to determine the subject's instantaneous 3-dimensional position. We illustrate our method by using these trajectory data to benchmark the routine flight performance envelope of our flies. Flight speeds were most commonly observed between 1.2 ms−1 and 2.3 ms−1, with a maximum of 2.5 ms−1. Our flies tended to dive faster than they climbed, with a maximum descent rate (−2.4 ms−1) almost double the maximum climb rate (1.2 ms−1). Modal turn rate was around 240°s−1, with maximal rates in excess of 1700°s−1. We used the maximal flight performance we observed during normal flight to construct notional physical limits on the blowfly flight envelope, and used the distribution of observations within that notional envelope to postulate behavioural preferences or physiological and anatomical constraints. The flight trajectories we recorded were never steady: rather they were constantly accelerating or decelerating, with maximum tangential accelerations and maximum centripetal accelerations on the order of 3 g
    corecore