1,304 research outputs found
Impact of the introduction of a universal childhood influenza vaccination programme on influenza-related admissions to paediatric intensive care units in England
Introduction
A universal childhood influenza vaccination programme was introduced in the UK in September 2013. We examine the impact of the gradual introduction of this programme on influenza-related paediatric intensive care unit (PICU) admission rates in England.
Methods
We extracted data on all influenza-related admissions to PICUs in England in resident children aged 0–15 years old between October 2003 and March 2017 from the Paediatric Intensive Care Audit Network (PICANet) database. We estimated influenza-associated PICU admission rates per 100 000 children by age group, sex and winter season (October to March), and used Poisson regression models to estimate incidence rate ratios (IRRs) in the winter seasons since the introduction of universal childhood vaccination compared with the two winters before the introduction of the programme (2011–2013).
Results
We identified 929 influenza-related PICU admissions among 873 children. 48.3% of admissions were among children aged less than 2 years old. The influenza-associated PICU admission rate was 1.32 per 100 000 children (95% CI 1.23 to 1.40). We identified a significant increase in influenza PICU admissions in the winters following the introduction of the universal childhood vaccination programme compared with the winters of 2010/2011–2012/2013 among children aged <5 years old: IRR 1.58 (1.05, 2.37) in children <1 year, 2.71 (1.43, 5.17) in 1 year-olds and 1.98 (1.18, 3.31) in children 2–4 years old. No significant difference was found among children aged 5–15 years.
Conclusion
The universal childhood influenza vaccination has not yet reduced the influenza-associated burden on PICUs in England during its early phase of introduction. Monitoring of influenza PICU admission rates needs to continue in England to assess the long-term impact of universal paediatric influenza vaccination. Linkage between PICANet and national infection surveillance databases would better enable such monitoring
Developing an award program for children's settings to support healthy eating and physical activity and reduce the risk of overweight and obesity
<p>Abstract</p> <p>Background</p> <p>This paper aimed to identify the best way to engage, motivate and support early childhood services (ECS) and primary schools (PS) to create policy and practise changes to promote healthy eating and physical activity. This information would be used to develop a suitable program to implement within these children's settings to reduce the risk of childhood overweight and obesity.</p> <p>Methods</p> <p>The Medical Research Council's (UK) framework for the design and evaluation of complex interventions was used to guide the development of the healthy eating and physical activity program suitable for ECS and PS. Within this framework a range of evaluation methods, including stakeholder planning, in-depth interviews with ECS and PS staff and acceptability and feasibility trials in one local government area, were used to ascertain the best way to engage and support positive changes in these children's settings.</p> <p>Results</p> <p>Both ECS and PS identified that they had a role to play to improve children's healthy eating and physical activity. ECS identified their role in promoting healthy eating and physical activity as important for children's health, and instilling healthy habits for life. PS felt that these were health issues, rather than educational issues; however, schools saw the link between healthy eating and physical activity and student learning outcomes. These settings identified that a program that provides a simple guide that recognises good practise in these settings, such as an award scheme using a health promoting schools approach, as a feasible and acceptable way for them to support children's healthy eating and physical activity.</p> <p>Conclusion</p> <p>Through the process of design and evaluation a program - <it>Kids - 'Go for your life'</it>, was developed to promote and support children's healthy eating and physical activity and reduce the risk of childhood overweight and obesity. <it>Kids - 'Go for your life' </it>used an award program, based on a health promoting schools approach, which was demonstrated to be a suitable model to engage ECS and PS and was acceptable and feasible to create policy and practise changes to support healthy eating and physical activity for children.</p
Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus
BACKGROUND: Diabetic nephropathy is a serious complication of diabetes mellitus and is associated with considerable morbidity and high mortality. There is increasing evidence to suggest that dysregulation of the epigenome is involved in diabetic nephropathy. We assessed whether epigenetic modification of DNA methylation is associated with diabetic nephropathy in a case-control study of 192 Irish patients with type 1 diabetes mellitus (T1D). Cases had T1D and nephropathy whereas controls had T1D but no evidence of renal disease. METHODS: We performed DNA methylation profiling in bisulphite converted DNA from cases and controls using the recently developed Illumina Infinium(R) HumanMethylation27 BeadChip, that enables the direct investigation of 27,578 individual cytosines at CpG loci throughout the genome, which are focused on the promoter regions of 14,495 genes. RESULTS: Singular Value Decomposition (SVD) analysis indicated that significant components of DNA methylation variation correlated with patient age, time to onset of diabetic nephropathy, and sex. Adjusting for confounding factors using multivariate Cox-regression analyses, and with a false discovery rate (FDR) of 0.05, we observed 19 CpG sites that demonstrated correlations with time to development of diabetic nephropathy. Of note, this included one CpG site located 18 bp upstream of the transcription start site of UNC13B, a gene in which the first intronic SNP rs13293564 has recently been reported to be associated with diabetic nephropathy. CONCLUSION: This high throughput platform was able to successfully interrogate the methylation state of individual cytosines and identified 19 prospective CpG sites associated with risk of diabetic nephropathy. These differences in DNA methylation are worthy of further follow-up in replication studies using larger cohorts of diabetic patients with and without nephropathy
Production and validation of a good manufacturing practice grade human fibroblast line for supporting human embryonic stem cell derivation and culture
Introduction: The development of reproducible methods for deriving human embryonic stem cell (hESC) lines in compliance with good manufacturing practice (GMP) is essential for the development of hESC-based therapies. Although significant progress has been made toward the development of chemically defined conditions for the maintenance and differentiation of hESCs, efficient derivation of new hESCs requires the use of fibroblast feeder cells. However, GMP-grade feeder cell lines validated for hESC derivation are not readily available. Methods: We derived a fibroblast cell line (NclFed1A) from human foreskin in compliance with GMP standards. Consent was obtained to use the cells for the production of hESCs and to generate induced pluripotent stem cells (iPSCs). We compared the line with a variety of other cell lines for its ability to support derivation and self-renewal of hESCs. Results: NclFed1A supports efficient rates (33%) of hESC colony formation after explantation of the inner cell mass (ICM) of human blastocysts. This compared favorably with two mouse embryonic fibroblast (MEF) cell lines. NclFed1A also compared favorably with commercially available foreskin fibroblasts and MEFs in promoting proliferation and pluripotency of a number of existing and widely used hESCs. The ability of NclFed1A to maintain self-renewal remained undiminished for up to 28 population doublings from the master cell bank. Conclusions: The human fibroblast line Ncl1Fed1A, produced in compliance with GMP standards and qualified for derivation and maintenance of hESCs, is a useful resource for the advancement of progress toward hESC-based therapies in regenerative medicine
Recommended from our members
Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons
We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2% after detector calibration
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
A Typology of Child Sponsorship Activity
Framing the debate over child sponsorship in terms of legitimacy and changing perceptions of credible international humanitarian interventions, this chapter takes exception to the tendency of child sponsorship critics to assume that sponsorship funded activity is much the same everywhere and similar today when compared to sponsorship practice in the past. Mindful of ongoing critique of child sponsorship, this chapter seeks to position those international non-governmental organisations that utilise child sponsorship to fund interventions, in a landscape of contested ideas. It argues that informed critique of child sponsorship is best achieved through a typology of funded interventions. Four key types of sponsorship funded activity are identified as emerging over time, some of which are currently deemed to be less legitimate in terms of poverty reduction and are best seen as welfare measures aimed at individual children rather than community development or advocacy activities
Primary ovarian cancer chemotherapy: current standards of care
Chemotherapy has been regarded as standard therapy for the majority of women with advanced epithelial ovarian cancer for several decades, with this role filled largely by the alkylating agents — used as monotherapy — until the mid-1980s. The activity of cisplatin in this disorder was established during the 1970s, and combinations of cisplatin and an alkylating agent were widely used during the late 1980s. However, further research prompted by continuing concerns over poor survival and tolerability led to the adoption of paclitaxel in combination with either cisplatin or carboplatin as first-line therapy in ovarian cancer during the 1990s. Most recent research has focused on further optimisation of these regimens to maximise clinical benefit while minimising toxicity, and investigations into alternative taxanes (e.g. docetaxel), other novel agents and new treatment schedules are ongoing
2D-PAGE as an effective method of RNA degradome analysis
The continuously growing interest in small regulatory RNA exploration is one of the important factors that have inspired the recent development of new high throughput techniques such as DNA microarrays or next generation sequencing. Each of these methods offers some significant advantages but at the same time each of them is expensive, laborious and challenging especially in terms of data analysis. Therefore, there is still a need to develop new analytical methods enabling the fast, simple and cost-effective examination of the complex RNA mixtures. Recently, increasing attention has been focused on the RNA degradome as a potential source of riboregulators. Accordingly, we attempted to employ a two-dimensional gel electrophoresis as a quick and uncomplicated method of profiling RNA degradome in plant or human cells. This technique has been successfully used in proteome analysis. However, its application in nucleic acids studies has been very limited. Here we demonstrate that two dimensional electrophoresis is a technique which allows one to quickly and cost-effectively identify and compare the profiles of 10–90 nucleotide long RNA accumulation in various cells and organs
- …