23 research outputs found
Role of the mesoamygdaloid dopamine projection in emotional learning
Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent
Minimum Volume Confidence Regions for Parameters of Exponential Distributions from Different Samples
Structural basis for RIFIN-mediated activation of LILRB1 in malaria
The Plasmodium species that cause malaria are obligate intracellular parasites, and disease symptoms occur as they replicate within human blood. Despite risking immune detection, the parasite delivers proteins that bind host receptors to infected erythrocyte surfaces. In the causative agent of the most deadly human malaria, Plasmodium falciparum, RIFINs form the largest erythrocyte surface protein family1. Some RIFINs can bind inhibitory immune receptors, acting as targets for unusual antibodies containing a LAIR1 ectodomain2–4, or as ligands for LILRB15. RIFINs stimulate LILRB1 activation and signalling5, thereby potentially dampening human immune responses. To understand this process, we determined a structure of a RIFIN bound to LILRB1. We show that the RIFIN mimics the natural activating ligand of LILRB1, MHC class I, in its LILRB1-binding mode. A single RIFIN mutation disrupts the complex, blocks LILRB1 binding by all tested RIFINs and abolishes signalling in a reporter assay. In a supported lipid bilayer system, which mimics NK cell activation by antibody-dependent cell-mediated cytotoxicity, both RIFIN and MHC are recruited to the NK cell immunological synapse and reduce cell activation, as measured by perforin mobilisation. Therefore, LILRB1-binding RIFINs mimic the binding mode of the natural ligand of LILRB1 and suppress NK cell function.</p