1,175 research outputs found

    Effects of Contact Network Models on Stochastic Epidemic Simulations

    Full text link
    The importance of modeling the spread of epidemics through a population has led to the development of mathematical models for infectious disease propagation. A number of empirical studies have collected and analyzed data on contacts between individuals using a variety of sensors. Typically one uses such data to fit a probabilistic model of network contacts over which a disease may propagate. In this paper, we investigate the effects of different contact network models with varying levels of complexity on the outcomes of simulated epidemics using a stochastic Susceptible-Infectious-Recovered (SIR) model. We evaluate these network models on six datasets of contacts between people in a variety of settings. Our results demonstrate that the choice of network model can have a significant effect on how closely the outcomes of an epidemic simulation on a simulated network match the outcomes on the actual network constructed from the sensor data. In particular, preserving degrees of nodes appears to be much more important than preserving cluster structure for accurate epidemic simulations.Comment: To appear at International Conference on Social Informatics (SocInfo) 201

    Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe/CdSe nanocrystals

    Full text link
    Magnetic doping of semiconductor nanostructures is actively pursued for applications in magnetic memory and spin-based electronics. Central to these efforts is a drive to control the interaction strength between carriers (electrons and holes) and the embedded magnetic atoms. In this respect, colloidal nanocrystal heterostructures provide great flexibility via growth-controlled `engineering' of electron and hole wavefunctions within individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d exchange interaction between electron-hole excitations (excitons) and paramagnetic manganese ions using `inverted' core-shell nanocrystals composed of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe. Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the band-edge exciton that, surprisingly, are tunable in both magnitude and sign. Effective exciton g-factors are controllably tuned from -200 to +30 solely by increasing the CdSe shell thickness, demonstrating that strong quantum confinement and wavefunction engineering in heterostructured nanocrystal materials can be utilized to manipulate carrier-Mn wavefunction overlap and the sp-d exchange parameters themselves.Comment: To appear in Nature Materials; 18 pages, 4 figures + Supp. Inf

    Secular Evolution of Galaxy Morphologies

    Get PDF
    Today we have numerous evidences that spirals evolve dynamically through various secular or episodic processes, such as bar formation and destruction, bulge growth and mergers, sometimes over much shorter periods than the standard galaxy age of 10-15 Gyr. This, coupled to the known properties of the Hubble sequence, leads to a unique sense of evolution: from Sm to Sa. Linking this to the known mass components provides new indications on the nature of dark matter in galaxies. The existence of large amounts of yet undetected dark gas appears as the most natural option. Bounds on the amount of dark stars can be given since their formation is mostly irreversible and requires obviously a same amount of gas.Comment: 8 pages, Latex2e, crckapb.sty macros, 1 Postscript figure, replaced with TeX source; To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht

    Moisture transport by Atlantic tropical cyclones onto the North American continent

    Get PDF
    Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004–2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7 to 18 % (mean 14 %) of total net onshore flux to Atlantic TCs. A reduced contribution of 10 % (range 9 to 11 %) was found for the 1980–2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980–2012 period, a further 8 % (range 6 to 9 % from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19 % (range 17 to 22 %) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Nino-Southern Oscillation phenomenon

    Star forming dwarf galaxies

    Full text link
    Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon, September 2010, Springer Verlag, in pres

    The direct healthcare costs associated with psychological distress and major depression : A population-based cohort study in Ontario, Canada

    Get PDF
    The objective of our study was to estimate direct healthcare costs incurred by a population-based sample of people with psychological distress or depression. We used the 2002 Canadian Community Health Survey on Mental Health and Well Being and categorized individuals as having psychological distress using the Kessler-6, major depressive disorder (MDD) using DSM-IV criteria and a comparison group of participants without MDD or psychological distress. Costs in 2013 USD were estimated by linking individuals to health administrative databases and following them until March 31, 2013. Our sample consisted of 9,965 individuals, of whom 651 and 409 had psychological distress and MDD, respectively. Although the age-and-sex adjusted per-capita costs were similarly high among the psychologically distressed (3,364,953,364, 95% CI: 2,791, 3,937)andthosewithMDD(3,937) and those with MDD (3,210, 95% CI: 2,413,2,413, 4,008) compared to the comparison group (2,629,952,629, 95% CI: 2,312, 2,945),thepopulationwideexcesscostsforpsychologicaldistress(2,945), the population-wide excess costs for psychological distress (441 million) were more than twice that for MDD ($210 million) as there was a greater number of people with psychological distress than depression. We found substantial healthcare costs associated with psychological distress and depression, suggesting that psychological distress and MDD have a high cost burden and there may be public health intervention opportunities to relieve distress. Further research examining how individuals with these conditions use the healthcare system may provide insight into the allocation of limited healthcare resources while maintaining high quality care

    The origin of dust in galaxies revisited: the mechanism determining dust content

    Full text link
    The origin of cosmic dust is a fundamental issue in planetary science. This paper revisits the origin of dust in galaxies, in particular, in the Milky Way, by using a chemical evolution model of a galaxy composed of stars, interstellar medium, metals (elements heavier than helium), and dust. We start from a review of time-evolutionary equations of the four components, and then, we present simple recipes for the stellar remnant mass and yields of metal and dust based on models of stellar nucleosynthesis and dust formation. After calibrating some model parameters with the data from the solar neighborhood, we have confirmed a shortage of the stellar dust production rate relative to the dust destruction rate by supernovae if the destruction efficiency suggested by theoretical works is correct. If the dust mass growth by material accretion in molecular clouds is active, the observed dust amount in the solar neighborhood is reproduced. We present a clear analytic explanation of the mechanism for determining dust content in galaxies after the activation of accretion growth: a balance between accretion growth and supernova destruction. Thus, the dust content is independent of the uncertainty of the stellar dust yield after the growth activation. The timing of the activation is determined by a critical metal mass fraction which depends on the growth and destruction efficiencies. The solar system formation seems to have occurred well after the activation and plenty of dust would have existed in the proto-solar nebula.Comment: 12 pages, 11 figure

    Complex Fluids and Hydraulic Fracturing

    Get PDF
    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process
    corecore