28 research outputs found

    Modelling credit spreads with time volatility, skewness, and kurtosis

    Get PDF
    This paper seeks to identify the macroeconomic and financial factors that drive credit spreads on bond indices in the US credit market. To overcome the idiosyncratic nature of credit spread data reflected in time varying volatility, skewness and thick tails, it proposes asymmetric GARCH models with alternative probability density functions. The results show that credit spread changes are mainly explained by the interest rate and interest rate volatility, the slope of the yield curve, stock market returns and volatility, the state of liquidity in the corporate bond market and, a heretofore overlooked variable, the foreign exchange rate. They also confirm that the asymmetric GARCH models and Student-t distributions are systematically superior to the conventional GARCH model and the normal distribution in in-sample and out-of-sample testing

    Maturation of GABAergic Inhibition Promotes Strengthening of Temporally Coherent Inputs among Convergent Pathways

    Get PDF
    Spike-timing-dependent plasticity (STDP), a form of Hebbian plasticity, is inherently stabilizing. Whether and how GABAergic inhibition influences STDP is not well understood. Using a model neuron driven by converging inputs modifiable by STDP, we determined that a sufficient level of inhibition was critical to ensure that temporal coherence (correlation among presynaptic spike times) of synaptic inputs, rather than initial strength or number of inputs within a pathway, controlled postsynaptic spike timing. Inhibition exerted this effect by preferentially reducing synaptic efficacy, the ability of inputs to evoke postsynaptic action potentials, of the less coherent inputs. In visual cortical slices, inhibition potently reduced synaptic efficacy at ages during but not before the critical period of ocular dominance (OD) plasticity. Whole-cell recordings revealed that the amplitude of unitary IPSCs from parvalbumin positive (Pv+) interneurons to pyramidal neurons increased during the critical period, while the synaptic decay time-constant decreased. In addition, intrinsic properties of Pv+ interneurons matured, resulting in an increase in instantaneous firing rate. Our results suggest that maturation of inhibition in visual cortex ensures that the temporally coherent inputs (e.g. those from the open eye during monocular deprivation) control postsynaptic spike times of binocular neurons, a prerequisite for Hebbian mechanisms to induce OD plasticity

    Thalamic Activation Modulates the Responses of Neurons in Rat Primary Auditory Cortex: An In Vivo Intracellular Recording Study

    Get PDF
    Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB) of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC). In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI) while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs) in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing

    Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep RID B-8387-2009

    No full text
    Plastic changes occurring during wakefulness aid in the acquisition and consolidation of memories. For some memories, further consolidation requires sleep, but whether plastic processes during wakefulness and sleep differ is unclear. We show that, in rat cortex and hippocampus, GluR1-containing AMPA receptor (AMPAR) levels are high during wakefulness and low during sleep, and changes in the phosphorylation states of AMPARs, CamKII and GSK3beta are consistent with synaptic potentiation during wakefulness and depression during sleep. Furthermore, slope and amplitude of cortical evoked responses increase after wakefulness, decrease after sleep and correlate with changes in slow-wave activity, a marker of sleep pressure. Changes in molecular and electrophysiological indicators of synaptic strength are largely independent of the time of day. Finally, cortical long-term potentiation can be easily induced after sleep, but not after wakefulness. Thus, wakefulness appears to be associated with net synaptic potentiation, whereas sleep may favor global synaptic depression, thereby preserving an overall balance of synaptic strength
    corecore