85 research outputs found
Strain-controlled criticality governs the nonlinear mechanics of fibre networks
Disordered fibrous networks are ubiquitous in nature as major structural
components of living cells and tissues. The mechanical stability of networks
generally depends on the degree of connectivity: only when the average number
of connections between nodes exceeds the isostatic threshold are networks
stable (Maxwell, J. C., Philosophical Magazine 27, 294 (1864)). Upon increasing
the connectivity through this point, such networks undergo a mechanical phase
transition from a floppy to a rigid phase. However, even sub-isostatic networks
become rigid when subjected to sufficiently large deformations. To study this
strain-controlled transition, we perform a combination of computational
modeling of fibre networks and experiments on networks of type I collagen
fibers, which are crucial for the integrity of biological tissues. We show
theoretically that the development of rigidity is characterized by a
strain-controlled continuous phase transition with signatures of criticality.
Our experiments demonstrate mechanical properties consistent with our model,
including the predicted critical exponents. We show that the nonlinear
mechanics of collagen networks can be quantitatively captured by the
predictions of scaling theory for the strain-controlled critical behavior over
a wide range of network concentrations and strains up to failure of the
material
Particle tracking for polydisperse sedimenting droplets in phase separation
When a binary fluid demixes under a slow temperature ramp, nucleation,
coarsening and sedimentation of droplets lead to an oscillatory evolution of
the phase separating system. The advection of the sedimenting droplets is found
to be chaotic. The flow is driven by density differences between the two
phases. Here, we show how image processing can be combined with particle
tracking to resolve droplet size and velocity simultaneously. Droplets are used
as tracer particles, and the sedimentation velocity is determined. Taking these
effects into account, droplets with radii in the range of 4 -- 40 micrometers
are detected and tracked. Based on this data we resolve the oscillations in the
droplet size distribution which are coupled to the convective flow.Comment: 13 pages; 16 figures including 3 photographs and 3 false-color plot
A Wide and Deep Neural Network for Survival Analysis from Anatomical Shape and Tabular Clinical Data
We introduce a wide and deep neural network for prediction of progression
from patients with mild cognitive impairment to Alzheimer's disease.
Information from anatomical shape and tabular clinical data (demographics,
biomarkers) are fused in a single neural network. The network is invariant to
shape transformations and avoids the need to identify point correspondences
between shapes. To account for right censored time-to-event data, i.e., when it
is only known that a patient did not develop Alzheimer's disease up to a
particular time point, we employ a loss commonly used in survival analysis. Our
network is trained end-to-end to combine information from a patient's
hippocampus shape and clinical biomarkers. Our experiments on data from the
Alzheimer's Disease Neuroimaging Initiative demonstrate that our proposed model
is able to learn a shape descriptor that augments clinical biomarkers and
outperforms a deep neural network on shape alone and a linear model on common
clinical biomarkers.Comment: Data and Machine Learning Advances with Multiple Views Workshop,
ECML-PKDD 201
Symptomatic cardiac metastases of breast cancer 27 years after mastectomy: a case report with literature review - pathophysiology of molecular mechanisms and metastatic pathways, clinical aspects, diagnostic procedures and treatment modalities.
Metastases to the heart and pericardium are rare but more common than primary cardiac tumours and are generally associated with a rather poor prognosis. Most cases are clinically silent and are undiagnosed in vivo until the autopsy. We present a female patient with a 27-year-old history of an operated primary breast cancer who was presented with dyspnoea, paroxysmal nocturnal dyspnoea and orthopnoea. The clinical signs and symptoms aroused suspicion of congestive heart failure. However, the cardiac metastases were detected during a routine cardiologic evaluation and confirmed with computed tomography imaging. Additionally, this paper outlines the pathophysiology of molecular and clinical mechanisms involved in the metastatic spreading, clinical presentation, diagnostic procedures and treatment of heart metastases. The present case demonstrates that a complete surgical resection and systemic chemotherapy may result in a favourable outcome for many years. However, a lifelong medical follow-up, with the purpose of a detection of metastases, is highly recommended. We strongly call the attention of clinicians to the fact that during the follow-up of all cancer patients, such heart failure may be a harbinger of the secondary heart involvement
Anterior Approach to Correction of Levator Maldevelopment Ptosis with a New Emphasis on Supramaximal Levator Resection for Poor-Function Ptosis
Social marketing to promote HPV vaccination in pre-teenage children: Talk about a sexually transmitted infection
The Transmural Activation Sequence in Porcine and Canine Left Ventricle Is Markedly Different During Long-Duration Ventricular Fibrillation
- …
