78 research outputs found

    Transcranial direct current stimulation of right dorsolateral prefrontal cortex does not affect model-based or model-free reinforcement learning in humans

    Get PDF
    There is broad consensus that the prefrontal cortex supports goal-directed, model-based decision-making. Consistent with this, we have recently shown that model-based control can be impaired through transcranial magnetic stimulation of right dorsolateral prefrontal cortex in humans. We hypothesized that an enhancement of model-based control might be achieved by anodal transcranial direct current stimulation of the same region. We tested 22 healthy adult human participants in a within-subject, double-blind design in which participants were given Active or Sham stimulation over two sessions. We show Active stimulation had no effect on model-based control or on model-free ('habitual') control compared to Sham stimulation. These null effects are substantiated by a power analysis, which suggests that our study had at least 60% power to detect a true effect, and by a Bayesian model comparison, which favors a model of the data that assumes stimulation had no effect over models that assume stimulation had an effect on behavioral control. Although we cannot entirely exclude more trivial explanations for our null effect, for example related to (faults in) our experimental setup, these data suggest that anodal transcranial direct current stimulation over right dorsolateral prefrontal cortex does not improve model-based control, despite existing evidence that transcranial magnetic stimulation can disrupt such control in the same brain region

    “cAMP Sponge”: A Buffer for Cyclic Adenosine 3′, 5′-Monophosphate

    Get PDF
    Background: While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP). Methods/Principal Findings: Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIβRI\beta of protein kinase A (PKA). Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named “cAMP sponge”) was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets. Conclusions: This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events

    No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice

    Get PDF
    BACKGROUND: Several reports indicated that non-thermal electromagnetic radiation such as from mobile phones and base stations may promote cancer. Therefore, it was investigated experimentally, whether 900 MHz electromagnetic field exposure influences lymphoma development in a mouse strain that is genetically predisposed to this disease. The AKR/J mice genome carries the AK-virus, which leads within one year to spontaneous development of thymic lymphoblastic lymphoma. METHODS: 320 unrestrained female mice were sham-exposed or exposed (each n = 160 animals) to GSM like 900 MHz electromagnetic fields for 24 hours per day, 7 days per week, at an average whole body specific absorption rate (SAR) value of 0.4 W/kg. Animals were visually checked daily and were weighed and palpated weekly. Starting with an age of 6 months, blood samples were taken monthly from the tail. Animals with signs of disease or with an age of about 46 weeks were sacrificed and a gross necropsy was performed. RESULTS: Electromagnetic field exposure had a significant effect on body weight gain, with higher values in exposed than in sham-exposed animals. However, survival rate and lymphoma incidence did not differ between exposed and sham-exposed mice. CONCLUSION: These data do not support the hypothesis that exposure to 900 MHz electromagnetic fields is a significant risk factor for developing lymphoma in a genetically predisposed species, even at a relatively high exposure level

    Frontal GABA Levels Change during Working Memory

    Get PDF
    Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing

    Dysregulated luminal bacterial antigen-specific T-cell responses and antigen-presenting cell function in HLA-B27 transgenic rats with chronic colitis

    Get PDF
    HLA-B27/β2 microglobulin transgenic (TG) rats spontaneously develop T-cell-mediated colitis when colonized with normal commensal bacteria, but remain disease-free under germ-free conditions. We investigated regulation of in vitro T-cell responses to enteric bacterial components. Bacterial lysates prepared from the caecal contents of specific pathogen-free (SPF) rats stimulated interferon-γ (IFN-γ) production by TG but not non-TG mesenteric lymph node (MLN) cells. In contrast, essentially equivalent amounts of interleukin-10 (IL-10) were produced by TG and non-TG cells. However, when cells from MLNs of non-TG rats were cocultured with TG MLN cells, no suppression of IFN-γ production was noted. Both non-TG and TG antigen-presenting cells (APC) pulsed with caecal bacterial lysate were able to induce IFN-γ production by TG CD4(+) cells, although non-TG APC were more efficient than TG APC. Interestingly, the addition of exogenous IL-10 inhibited non-TG APC but not TG APC stimulation of IFN-γ production by cocultured TG CD4(+) lymphocytes. Conversely, in the presence of exogenous IFN-γ, production of IL-10 was significantly lower in the supernatants of TG compared to non-TG APC cultures. We conclude that commensal luminal bacterial components induce exaggerated in vitro IFN-γ responses in HLA-B27 TG T cells, which may in turn inhibit the production of regulatory molecules, such as IL-10. Alterations in the production of IFN-γ, and in responses to this cytokine, as well as possible resistance of TG cells to suppressive regulation could together contribute to the development of chronic colitis in TG rats

    Adoptive transfer of nontransgenic mesenteric lymph node cells induces colitis in athymic HLA-B27 transgenic nude rats

    Get PDF
    HLA-B27 transgenic (TG) rats develop spontaneous colitis when colonized with intestinal bacteria, whereas athymic nude (rnu/rnu) HLA-B27 TG rats remain disease free. The present study was designed to determine whether or not HLA-B27 expression on T cells is required for development of colitis after transfer of mesenteric lymph node (MLN) cells into rnu/rnu HLA-B27 recipients. Athymic nontransgenic (non-TG) and HLA-B27 TG recipients received MLN cells from either TG or non-TG rnu/+ heterozygous donor rats that contain T cells. HLA-B27 TG rnu/rnu recipients receiving either non-TG or TG MLN cells developed severe colitis and had higher caecal MPO and IL-1β levels, and their MLN cells produced more IFN-γ and less IL-10 after in vitro stimulation with caecal bacterial lysate compared to rnu/rnu non-TG recipients that remained disease free after receiving either TG or non-TG cells. Interestingly, proliferating donor TG T cells were detectable one week after adoptive transfer into rnu/rnu TG recipients but not after transfer into non-TG recipients. T cells from either non-TG or TG donors induce colitis in rnu/rnu TG but not in non-TG rats, suggesting that activation of effector T cells by other cell types that express HLA-B27 is pivotal for the pathogenesis of colitis in this model
    corecore