77 research outputs found

    Chemical combinations elucidate pathway interactions and regulation relevant to Hepatitis C replication

    Get PDF
    SREBP-2, oxidosqualene cyclase (OSC) or lanosterol demethylase were identified as novel sterol pathway-associated targets that, when probed with chemical agents, can inhibit hepatitis C virus (HCV) replication.Using a combination chemical genetics approach, combinations of chemicals targeting sterol pathway enzymes downstream of and including OSC or protein geranylgeranyl transferase I (PGGT) produce robust and selective synergistic inhibition of HCV replication. Inhibition of enzymes upstream of OSC elicit proviral responses that are dominant to the effects of inhibiting all downstream targets.Inhibition of the sterol pathway without inhibition of regulatory feedback mechanisms ultimately results in an increase in HCV replication because of a compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) expression. Increases in HMGCR expression without inhibition of HMGCR enzymatic activity ultimately stimulate HCV replication through increasing the cellular pool of geranylgeranyl pyrophosphate (GGPP).Chemical inhibitors that ultimately prevent SREBP-2 activation, inhibit PGGT or encourage the production of polar sterols have great potential as HCV therapeutics if associated toxicities can be reduced

    Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells

    Get PDF
    BACKGROUND: Nitrogen-containing bisphosphonates (N-BPs) have been designed to inhibit osteoclast-mediated bone resorption. However, it is now accepted that part of their anti-tumor activities is related to interference with the mevalonate pathway. METHODS: We investigated the effects of zoledronic acid (ZOL), on cell proliferation and protein isoprenylation in two tumoral (LnCAP, PC-3,), and one normal established (PNT1-A) prostatic cell line. To assess if inhibition of geranyl-geranylation by ZOL impairs the biological activity of RhoA GTPase, we studied the LPA-induced formation of stress fibers. The inhibitory effect of ZOL on geranyl geranyl transferase I was checked biochemically. Activity of ZOL on cholesterol biosynthesis was determined by measuring the incorporation of (14)C mevalonate in cholesterol. RESULTS: ZOL induced dose-dependent inhibition of proliferation of all the three cell lines although it appeared more efficient on the untransformed PNT1A. Whatever the cell line, 20 ΞΌM ZOL-induced inhibition was reversed by geranyl-geraniol (GGOH) but neither by farnesol nor mevalonate. After 48 hours treatment of cells with 20 ΞΌM ZOL, geranyl-geranylation of Rap1A was abolished whereas farnesylation of HDJ-2 was unaffected. Inhibition of Rap1A geranyl-geranylation by ZOL was rescued by GGOH and not by FOH. Indeed, as observed with treatment by a geranyl-geranyl transferase inhibitor, treatment of PNT1-A cells with 20 ΞΌM ZOL prevented the LPA-induced formation of stress fibers. We checked that in vitro ZOL did not inhibit geranyl-geranyl-transferase I. ZOL strongly inhibited cholesterol biosynthesis up to 24 hours but at 48 hours 90% of this biosynthesis was rescued. CONCLUSION: Although zoledronic acid is currently the most efficient bisphosphonate in metastatic prostate cancer management, its mechanism of action in prostatic cells remains unclear. We suggest in this work that although in first intention ZOL inhibits FPPsynthase its main biological actitivity is directed against protein Geranylgeranylation

    Effect of a farnesyl transferase inhibitor (R115777) on ductal carcinoma in situ of the breast in a human xenograft model and on breast and ovarian cancer cell growth in vitro and in vivo

    Get PDF
    INTRODUCTION: The ras pathway is essential for cell growth and proliferation. The effects of R115777, a farnesyl transferase inhibitor, were investigated in cancer cell lines expressing varying levels of growth factor receptors and with differing ras status. Effects on tumour xenografts and human ductal carcinoma in situ (DCIS) of the breast in a xenograft mouse model were also tested. METHOD: In vitro, the concentrations required to reduce cell numbers by 50% (50% inhibitory concentration) were established (MDA-MB231, MCF-7, MCF-7/HER2-18, BT-474, SK-BR3 and SKOV3). Human DCIS was implanted in nude mice or, in separate experiments, cultured cells were injected (MDA-MB231, MCF-7/HER2-18, SKOV3) and allowed to form tumours. Proliferation and apoptosis were determined by immunohistochemistry in xenografts and cell tumours. RESULTS: The 50% inhibitory concentrations varied a hundred-fold, from 39 nmol/l (Β± 26 nmol/l) for SKBR3 to 5.9 ΞΌmol/l(Β± 0.8 ΞΌmol/l) for MDA-MB231. In MCF-7/HER2-18 and SKOV3 cells the levels of tumour growth inhibition were approximately 85% and 40%, respectively. There was a significant decrease in the cell turnover index (CTI; proliferation/apoptosis). In MDA-MB 231 with activated k-ras no inhibition was observed. In treated DCIS xenografts proliferation decreased and apoptosis increased. The CTI ratio between the start and 1 and 2 weeks of treatment were 1.99 and 1.50, respectively, for controls and 0.85 (P = 0.005) and 0.75 (P = 0.08) for treated xenografts. CONCLUSION: Treatment with the farnesyl transferase inhibitor reduced cell growth in vitro and cell tumour growth in vivo. In DCIS treatment resulted in a reduced CTI. R115777 is a promising treatment for breast cancer but the relation between effect and growth factor receptor and ras status has to be established

    Applications of CRISPR–Cas systems in neuroscience

    Get PDF
    Genome-editing tools, and in particular those based on CRISPR-Cas (clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03

    Rad51 Inhibits Translocation Formation by Non-Conservative Homologous Recombination in Saccharomyces cerevisiae

    Get PDF
    Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer

    Novel Allosteric Sites on Ras for Lead Generation

    Get PDF
    Aberrant Ras activity is a hallmark of diverse cancers and developmental diseases. Unfortunately, conventional efforts to develop effective small molecule Ras inhibitors have met with limited success. We have developed a novel multi-level computational approach to discover potential inhibitors of previously uncharacterized allosteric sites. Our approach couples bioinformatics analysis, advanced molecular simulations, ensemble docking and initial experimental testing of potential inhibitors. Molecular dynamics simulation highlighted conserved allosteric coupling of the nucleotide-binding switch region with distal regions, including loop 7 and helix 5. Bioinformatics methods identified novel transient small molecule binding pockets close to these regions and in the vicinity of the conformationally responsive switch region. Candidate binders for these pockets were selected through ensemble docking of ZINC and NCI compound libraries. Finally, cell-based assays confirmed our hypothesis that the chosen binders can inhibit the downstream signaling activity of Ras. We thus propose that the predicted allosteric sites are viable targets for the development and optimization of new drugs
    • …
    corecore