212 research outputs found

    Assessing field‐scale risks of foliar insecticide applications to monarch butterfly (Danaus plexippus) larvae

    Get PDF
    Establishment and maintenance of milkweed plants (Asclepias spp.) in agricultural landscapes of the north central United States are needed to reverse the decline of North America\u27s eastern monarch butterfly (Danaus plexippus) population. Because of a lack of toxicity data, it is unclear how insecticide use may reduce monarch productivity when milkweed habitat is placed near maize and soybean fields. To assess the potential effects of foliar insecticides, acute cuticular and dietary toxicity of 5 representative active ingredients were determined: beta‐cyfluthrin (pyrethroid), chlorantraniliprole (anthranilic diamide), chlorpyrifos (organophosphate), and imidacloprid and thiamethoxam (neonicotinoids). Cuticular median lethal dose values for first instars ranged from 9.2 × 10–3 to 79 μg/g larvae for beta‐cyfluthrin and chlorpyrifos, respectively. Dietary median lethal concentration values for second instars ranged from 8.3 × 10–3 to 8.4 μg/g milkweed leaf for chlorantraniliprole and chlorpyrifos, respectively. To estimate larval mortality rates downwind from treated fields, modeled insecticide exposures to larvae and milkweed leaves were compared to dose–response curves obtained from bioassays with first‐, second‐, third‐, and fifth‐instar larvae. For aerial applications to manage soybean aphids, mortality rates at 60 m downwind were highest for beta‐cyfluthrin and chlorantraniliprole following cuticular and dietary exposure, respectively, and lowest for thiamethoxam. To estimate landscape‐scale risks, field‐scale mortality rates must be considered in the context of spatial and temporal patterns of insecticide use

    Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions

    Full text link
    Euclidean gravity method has been successful in computing logarithmic corrections to extremal black hole entropy in terms of low energy data, and gives results in perfect agreement with the microscopic results in string theory. Motivated by this success we apply Euclidean gravity to compute logarithmic corrections to the entropy of various non-extremal black holes in different dimensions, taking special care of integration over the zero modes and keeping track of the ensemble in which the computation is done. These results provide strong constraint on any ultraviolet completion of the theory if the latter is able to give an independent computation of the entropy of non-extremal black holes from microscopic description. For Schwarzschild black holes in four space-time dimensions the macroscopic result seems to disagree with the existing result in loop quantum gravity.Comment: LaTeX, 40 pages; corrected small typos and added reference

    Sub-Planckian black holes and the Generalized Uncertainty Principle

    Get PDF
    The Black Hole Uncertainty Principle correspondence suggests that there could exist black holes with mass beneath the Planck scale but radius of order the Compton scale rather than Schwarzschild scale. We present a modified, self-dual Schwarzschild-like metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution under M↔M−1M \leftrightarrow M^{-1} naturally implies a Generalized Uncertainty Principle with the linear form Δx∼1Δp+Δp\Delta x \sim \frac{1}{\Delta p} + \Delta p. We also demonstrate a natural dimensional reduction feature, in that the gravitational radius and thermodynamics of sub-Planckian objects resemble that of (1+1)(1+1)-D gravity. The temperature of sub-Planckian black holes scales as MM rather than M−1M^{-1} but the evaporation of those smaller than 10−3610^{-36}g is suppressed by the cosmic background radiation. This suggests that relics of this mass could provide the dark matter.Comment: 12 pages, 9 figures, version published in J. High En. Phy

    Logarithmic correction to BH entropy as Noether charge

    Get PDF
    We consider the role of the type-A trace anomaly in static black hole solutions to semiclassical Einstein equation in four dimensions. Via Wald's Noether charge formalism, we compute the contribution to the entropy coming from the anomaly induced effective action and unveil a logarithmic correction to the Bekenstein-Hawking area law. The corrected entropy is given by a seemingly universal formula involving the coefficient of the type-A trace anomaly, the Euler characteristic of the horizon and the value at the horizon of the solution to the uniformization problem for Q-curvature. Two instances are examined in detail: Schwarzschild and a four-dimensional massless topological black hole. We also find agreement with the logarithmic correction due to one-loop contribution of conformal fields in the Schwarzschild background.Comment: 14 pages, JHEP styl

    Hyperdominant left anterior descending artery continuing across left ventricular apex as posterior descending artery coexistent with aortic stenosis

    Get PDF
    We describe, in a 61 year old man, with coexistent aortic stenosis, the anomalous origin of posterior descending artery (PDA) from a stenotic left anterior descending (LAD) artery, as its continuation across the left ventricular apex, in the presence of a normally arising and atretic proximal right coronary artery. The patient underwent mechanical aortic valve replacement and triple coronary artery bypass grafting and made an uneventful recovery. To the best of our knowledge, origin of PDA as a continuation of LAD across the left ventricular apex in the presence of a normally arising but atretic proximal right coronary artery has never been described in literature before. There is one previous case report of continuation of LAD as PDA across the left ventricular apex in a patient with single left coronary coronary artery with an absent right coronary ostium. As the blood supply to the entire interventricular septum is derived from this "hyperdominant" LAD system, stenosis of LAD can be catastrophic. A review of literature of the anomalies of right coronary artery and, in particular, of its anomalous origin from LAD and its coexistence with aortic stenosis, is presented

    Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function

    Get PDF
    We evaluate the one loop determinant of matter multiplet fields of N=4 supergravity in the near horizon geometry of quarter BPS black holes, and use it to calculate logarithmic corrections to the entropy of these black holes using the quantum entropy function formalism. We show that even though individual fields give non-vanishing logarithmic contribution to the entropy, the net contribution from all the fields in the matter multiplet vanishes. Thus logarithmic corrections to the entropy of quarter BPS black holes, if present, must be independent of the number of matter multiplet fields in the theory. This is consistent with the microscopic results. During our analysis we also determine the complete spectrum of small fluctuations of matter multiplet fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde

    Back reaction, covariant anomaly and effective action

    Full text link
    In the presence of back reaction, we first produce the one-loop corrections for the event horizon and Hawking temperature of the Reissner-Nordstr\"om black hole. Then, based on the covariant anomaly cancelation method and the effective action technique, the modified expressions for the fluxes of gauge current and energy momentum tensor, due to the effect of back reaction, are obtained. The results are consistent with the Hawking fluxes of a (1+1)-dimensional blackbody at the temperature with quantum corrections, thus confirming the robustness of the covariant anomaly cancelation method and the effective action technique for black holes with back reaction.Comment: 17 page

    A randomised non-inferiority controlled trial of a single versus a four intradermal sterile water injection technique for relief of continuous lower back pain during labour

    Get PDF
    Background: Almost one third of women suffer continuous lower back pain during labour. Evidence from three systematic reviews demonstrates that sterile water injections (SWI) provide statistically and clinically significant pain relief in women experiencing continuous lower back pain during labour. The most effective technique to administer SWI is yet to be determined. Therefore, the aim of this study is to determine if the single injection SWI technique is no less effective than the routinely used four injection SWI method in reducing continuous lower back pain during labour.Methods/design: The trial protocol was developed in consultation with an interdisciplinary team of clinical researchers. We aim to recruit 319 women presenting at term, seeking analgesia for continuous severe lower back pain during labour. Participants will be recruited from two major maternity hospitals in Australia. Randomised participants are allocated to receive a four or single intradermal needle SWI technique. The primary outcome is the change in self-reported pain measured by visual analogue scale at baseline and thirty minutes post intervention. Secondary outcomes include VAS change scores at 10, 60, 90 and 120 min, analgesia use, mode of birth and maternal satisfaction.Statistical analysis: Sample size was calculated to achieve 90% power at an alpha of 0.025 to detect a non-inferiority margin of ≤ 1 cm on the VAS, using a one-sided, two-sample t-test. Baseline demographic and clinical characteristics will be analysed for comparability between groups. Differences in primary (VAS pain score) and secondary outcomes between groups will be analysed by intention to treat and per protocol analysis using Student's t-test and ANOVA.Conclusion: This study will determine if a single intradermal SWI technique is no less effective than the routinely used four injection technique for lower back pain during labour. The findings will allow midwives to offer women requesting SWI during labour an evidence-based alternative technique more easily administered by staff and accepted by labouring women. Trial Registration: ACTRN12609000964213

    Knowing with Which Eye We See: Utrocular Discrimination and Eye-Specific Signals in Human Visual Cortex

    Get PDF
    Neurophysiological and behavioral reports converge to suggest that monocular neurons in the primary visual cortex are biased toward low spatial frequencies, while binocular neurons favor high spatial frequencies. Here we tested this hypothesis with functional magnetic resonance imaging (fMRI). Human participants viewed flickering gratings at one of two spatial frequencies presented to either the left or the right eye, and judged which of the two eyes was being stimulated (utrocular discrimination). Using multivoxel pattern analysis we found that local spatial patterns of signals in primary visual cortex (V1) allowed successful decoding of the eye-of-origin. Decoding was above chance for low but not high spatial frequencies, confirming the presence of a bias reported by animal studies in human visual cortex. Behaviorally, we found that reliable judgment of the eye-of-origin did not depend on spatial frequency. We further analyzed the mean response in visual cortex to our stimuli and revealed a weak difference between left and right eye stimulation. Our results are thus consistent with the interpretation that participants use overall levels of neural activity in visual cortex, perhaps arising due to local luminance differences, to judge the eye-of-origin. Taken together, we show that it is possible to decode eye-specific voxel pattern information in visual cortex but, at least in healthy participants with normal binocular vision, these patterns are unrelated to awareness of which eye is being stimulated
    • …
    corecore