34 research outputs found

    Effects of chronic inflammatory bowel diseases on left ventricular structure and function: a study protocol

    Get PDF
    BACKGROUND: Experimental evidences suggest an increased collagen deposition in inflammatory bowel diseases (IBD). In particular, large amounts of collagen type I, III and V have been described and correlated to the development of intestinal fibrotic lesions. No information has been available until now about the possible increased collagen deposition far from the main target organ. In the hypothesis that chronic inflammation and increased collagen metabolism are reflected also in the systemic circulation, we aimed this study to evaluate the effects on left ventricular wall structure by assessing splancnic and systemic collagen metabolism (procollagen III assay), deposition (ultrasonic tissue characterization), and cardiac function (echocardiography) in patients with different long standing history of IBD, before and after surgery. METHODS: Thirty patients affected by active IBD, 15 with Crohn and 15 with Ulcerative Colitis, submitted to surgery will be enrolled in the study in a double blind fashion. They will be studied before the surgical operation and 6, 12 months after surgery. A control group of 15 healthy age and gender-matched subjects will also be studied. At each interval blood samples will be collected in order to assess the collagen metabolism; a transthoracic echocardiogram will be recorded for the subsequent determination of cardiac function and collagen deposition. DISCUSSION: From this study protocol we expect additional information about the association between IBD and cardiovascular disorders; in particular to address the question if chronic inflammation, through the altered collagen metabolism, could affect left ventricular structure and function in a manner directly related to the estimated duration of the disease

    Gene therapy for carcinoma of the breast: Pro-apoptotic gene therapy

    Get PDF
    The dysregulation of apoptosis contributes in a variety of ways to the malignant phenotype. It is increasingly recognized that the alteration of pro-apoptotic and anti-apoptotic molecules determines not only escape from mechanisms that control cell cycle and DNA damage, but also endows the cancer cells with the capacity to survive in the presence of a metabolically adverse milieu, to resist the attack of the immune system, to locally invade and survive despite a lack of tissue anchorage, and to evade the otherwise lethal insults induced by drugs and radiotherapy. A multitude of apoptosis mediators has been identified in the past decade, and the roles of several of them in breast cancer have been delineated by studying the clinical correlates of pathologically documented abnormalities. Using this information, attempts are being made to correct the fundamental anomalies at the genetic level. Fundamental to this end are the design of more efficient and selective gene transfer systems, and the employment of complex interventions that are tailored to breast cancer and that are aimed concomitantly towards different components of the redundant regulatory pathways. The combination of such genetic modifications is most likely to be effective when combined with conventional treatments, thus robustly activating several pro-apoptotic pathways

    The cellular geography of Aurora kinases

    Get PDF
    Aurora is the name given to a family of highly conserved protein kinases with essential roles in many aspects of cell division. Yeasts have a single Aurora kinase, whereas mammals have three: Aurora A, B and C. During mitosis, Aurora kinases regulate the structure and function of the cytoskeleton and chromosomes and the interactions between these two at the kinetochore. They also regulate signalling by the spindle-assembly checkpoint pathway and cytokinesis. Perturbation of Aurora kinase expression or function might lead to cancer

    Translational and posttranslational regulation of XIAP by eIF2α and ATF4 promotes ER stress–induced cell death during the unfolded protein response

    No full text
    Endoplasmic reticulum (ER) protein misfolding activates the unfolded protein response (UPR) to help cells cope with ER stress. If ER homeostasis is not restored, UPR promotes cell death. The mechanisms of UPR-mediated cell death are poorly understood. The PKR-like endoplasmic reticulum kinase (PERK) arm of the UPR is implicated in ER stress–induced cell death, in part through up-regulation of proapoptotic CCAAT/enhancer binding protein homologous protein (CHOP). Chop((−)/(−)) cells are partially resistant to ER stress–induced cell death, and CHOP overexpression alone does not induce cell death. These findings suggest that additional mechanisms regulate cell death downstream of PERK. Here we find dramatic suppression of antiapoptosis XIAP proteins in response to chronic ER stress. We find that PERK down-regulates XIAP synthesis through eIF2α and promotes XIAP degradation through ATF4. Of interest, PERK's down-regulation of XIAP occurs independently of CHOP activity. Loss of XIAP leads to increased cell death, whereas XIAP overexpression significantly enhances resistance to ER stress–induced cell death, even in the absence of CHOP. Our findings define a novel signaling circuit between PERK and XIAP that operates in parallel with PERK to CHOP induction to influence cell survival during ER stress. We propose a “two-hit” model of ER stress–induced cell death involving concomitant CHOP up-regulation and XIAP down-regulation both induced by PERK
    corecore