1,565 research outputs found

    What Can Information Encapsulation Tell Us About Emotional Rationality?

    Get PDF
    What can features of cognitive architecture, e.g. the information encapsulation of certain emotion processing systems, tell us about emotional rationality? de Sousa proposes the following hypothesis: “the role of emotions is to supply the insufficiency of reason by imitating the encapsulation of perceptual modes” (de Sousa 1987: 195). Very roughly, emotion processing can sometimes occur in a way that is insensitive to what an agent already knows, and such processing can assist reasoning by restricting the response-options she considers. This paper aims to provide an exposition and assessment of de Sousa’s hypothesis. I argue information encapsulation is not essential to emotion-driven reasoning, as emotions can determine the relevance of response-options even without being encapsulated. However, I argue encapsulation can still play a role in assisting reasoning by restricting response-options more efficiently, and in a way that ensures which options emotions deem relevant are not overridden by what the agent knows. I end by briefly explaining why this very feature also helps explain how emotions can, on occasion, hinder reasoning

    Sample size determination for bibliographic retrieval studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research for developing search strategies to retrieve high-quality clinical journal articles from MEDLINE is expensive and time-consuming. The objective of this study was to determine the minimal number of high-quality articles in a journal subset that would need to be hand-searched to update or create new MEDLINE search strategies for treatment, diagnosis, and prognosis studies.</p> <p>Methods</p> <p>The desired width of the 95% confidence intervals (W) for the lowest sensitivity among existing search strategies was used to calculate the number of high-quality articles needed to reliably update search strategies. New search strategies were derived in journal subsets formed by 2 approaches: random sampling of journals and top journals (having the most high-quality articles). The new strategies were tested in both the original large journal database and in a low-yielding journal (having few high-quality articles) subset.</p> <p>Results</p> <p>For treatment studies, if W was 10% or less for the lowest sensitivity among our existing search strategies, a subset of 15 randomly selected journals or 2 top journals were adequate for updating search strategies, based on each approach having at least 99 high-quality articles. The new strategies derived in 15 randomly selected journals or 2 top journals performed well in the original large journal database. Nevertheless, the new search strategies developed using the random sampling approach performed better than those developed using the top journal approach in a low-yielding journal subset. For studies of diagnosis and prognosis, no journal subset had enough high-quality articles to achieve the expected W (10%).</p> <p>Conclusion</p> <p>The approach of randomly sampling a small subset of journals that includes sufficient high-quality articles is an efficient way to update or create search strategies for high-quality articles on therapy in MEDLINE. The concentrations of diagnosis and prognosis articles are too low for this approach.</p

    Graviton 1-loop partition function for 3-dimensional massive gravity

    Full text link
    The graviton 1-loop partition function in Euclidean topologically massive gravity (TMG) is calculated using heat kernel techniques. The partition function does not factorize holomorphically, and at the chiral point it has the structure expected from a logarithmic conformal field theory. This gives strong evidence for the proposal that the dual conformal field theory to TMG at the chiral point is indeed logarithmic. We also generalize our results to new massive gravity.Comment: 19 pages, v2: major revision, considerably stronger conclusions, added comparison with LCFT partition function, confirmation of LCFT conjecture, added autho

    Ventricular Stimulus Site Influences Dynamic Dispersion of Repolarization In The Intact Human Heart

    Get PDF
    The spatial variation in restitution properties in relation to varying stimulus site is poorly defined. This study aimed to investigate the effect of varying stimulus site on apico-basal and transmural activation time (AT), action potential duration (APD) and repolarization time (RT) during restitution studies in the intact human heart. Ten patients with structurally normal hearts, undergoing clinical electrophysiology studies were enrolled. Decapolar catheters were placed apex to base in the endocardial right ventricle (RVendo) and left ventricle (LVendo), and an LV branch of the coronary sinus (LVepi) for transmural recording. S1-S2 restitution protocols were performed pacing RVendo apex, LVendo base and LVepi base. Overall 725 restitution curves were analyzed, 74% of slopes had an Smax>1 (p < 0.001), mean Smax=1.76. APD was shorter in the LVepi compared to LVendo regardless of pacing site (30ms difference during RVendo pacing, 25ms during LVendo and 48ms during LVepi; 50(th) quantile, p<0.01). Basal LVepi pacing resulted in a significant transmural gradient of RT (77ms, 50(th) quantile: p<0.01), due to loss of negative transmural AT-APD coupling (mean slope 0.63±0.3). No significant transmural gradient in RT was demonstrated during endocardial RV or LV pacing, with preserved negative transmural AT-APD coupling (mean slope -1.36 ±1.9 and -0.71 ±0.4, respectively). Steep ARI restitution slopes predominate in the normal ventricle and dynamic ARI, RT gradients exist which are modulated by the site of activation. Epicardial stimulation to initiate ventricular activation promotes significant transmural gradients of repolarization that could be pro-arrhythmic

    Simple, Fast and Accurate Implementation of the Diffusion Approximation Algorithm for Stochastic Ion Channels with Multiple States

    Get PDF
    The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled activation subunits, while the DA was modeled using uncoupled activation subunits. Implementations of DA with coupled subunits, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable - allowing an easy and efficient DA implementation. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods.Comment: 32 text pages, 10 figures, 1 supplementary text + figur

    Combined In Silico, In Vivo, and In Vitro Studies Shed Insights into the Acute Inflammatory Response in Middle-Aged Mice

    Get PDF
    We combined in silico, in vivo, and in vitro studies to gain insights into age-dependent changes in acute inflammation in response to bacterial endotoxin (LPS). Time-course cytokine, chemokine, and NO2-/NO3- data from "middle-aged" (6-8 months old) C57BL/6 mice were used to re-parameterize a mechanistic mathematical model of acute inflammation originally calibrated for "young" (2-3 months old) mice. These studies suggested that macrophages from middle-aged mice are more susceptible to cell death, as well as producing higher levels of pro-inflammatory cytokines, vs. macrophages from young mice. In support of the in silico-derived hypotheses, resident peritoneal cells from endotoxemic middle-aged mice exhibited reduced viability and produced elevated levels of TNF-α, IL-6, IL-10, and KC/CXCL1 as compared to cells from young mice. Our studies demonstrate the utility of a combined in silico, in vivo, and in vitro approach to the study of acute inflammation in shock states, and suggest hypotheses with regard to the changes in the cytokine milieu that accompany aging. © 2013 Namas et al

    The Reform of Employee Compensation in China’s Industrial Enterprises

    Get PDF
    Although employee compensation reform in Chinese industrial sector has been discussed in the literature, the real changes in compensation system and pay practices have received insufficient attention and warrant further examination. This paper briefly reviews the pre- and post-reform compensation system, and reports the results of a survey of pay practices in the four major types of industrial enterprises in China. The research findings indicate that the type of enterprise ownership has little influence on general compensation practices, adoption of profit-sharing plans, and subsidy and allowance packages. In general, pay is linked more to individual performance and has become an important incentive to Chinese employees. However, differences are found across the enterprise types with regard to performance-related pay. Current pay practices are positively correlated to overall effectiveness of the enterprise

    New "light" for one-world approach toward safe and effective control of animal diseases and insect vectors from leishmaniac perspectives

    Get PDF
    Light is known to excite photosensitizers (PS) to produce cytotoxic reactive oxygen species (ROS) in the presence of oxygen. This modality is attractive for designing control measures against animal diseases and pests. Many PS have a proven safety record. Also, the ROS cytotoxicity selects no resistant mutants, unlike other drugs and pesticides. Photodynamic therapy (PDT) refers to the use of PS as light activable tumoricides, microbicides and pesticides in medicine and agriculture.Here we describe "photodynamic vaccination" (PDV) that uses PDT-inactivation of parasites, i.e. Leishmania as whole-cell vaccines against leishmaniasis, and as a universal carrier to deliver transgenic add-on vaccines against other infectious and malignant diseases. The efficacy of Leishmania for vaccine delivery makes use of their inherent attributes to parasitize antigen (vaccine)-presenting cells. Inactivation of Leishmania by PDT provides safety for their use. This is accomplished in two different ways: (i) chemical engineering of PS to enhance their uptake, e.g. Si-phthalocyanines; and (ii) transgenic approach to render Leishmania inducible for porphyrinogenesis. Three different schemes of Leishmania-based PDV are presented diagrammatically to depict the cellular events resulting in cell-mediated immunity, as seen experimentally against leishmaniasis and Leishmania-delivered antigen in vitro and in vivo. Safety versus efficacy evaluations are under way for PDT-inactivated Leishmania, including those further processed to facilitate their storage and transport. Leishmania transfected to express cancer and viral vaccine candidates are being prepared accordingly for experimental trials.We have begun to examine PS-mediated photodynamic insecticides (PDI). Mosquito cells take up rose bengal/cyanosine, rendering them light-sensitive to undergo disintegration in vitro, thereby providing a cellular basis for the larvicidal activity seen by the same treatments. Ineffectiveness of phthalocyanines and porphyrins for PDI underscores its requirement for different PS. Differential uptake of PS by insect versus other cells to account for this difference is under study.The ongoing work is patterned after the one-world approach by enlisting the participation of experts in medicinal chemistry, cell/molecular biology, immunology, parasitology, entomology, cancer research, tropical medicine and veterinary medicine. The availability of multidisciplinary expertise is indispensable for implementation of the necessary studies to move the project toward product development

    PM2.5 metal exposures and nocturnal heart rate variability: a panel study of boilermaker construction workers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To better understand the mechanism(s) of particulate matter (PM) associated cardiovascular effects, research priorities include identifying the responsible PM characteristics. Evidence suggests that metals play a role in the cardiotoxicity of fine PM (PM<sub>2.5</sub>) and in exposure-related decreases in heart rate variability (HRV). We examined the association between daytime exposure to the metal content of PM<sub>2.5 </sub>and night HRV in a panel study of boilermaker construction workers exposed to metal-rich welding fumes.</p> <p>Methods</p> <p>Twenty-six male workers were monitored by ambulatory electrocardiogram (ECG) on a workday while exposed to welding fume and a non-workday (baseline). From the ECG, rMSSD (square root of the mean squared differences of successive intervals) was summarized over the night (0:00–7:00). Workday, gravimetric PM<sub>2.5 </sub>samples were analyzed by x-ray fluorescence to determine metal content. We used linear mixed effects models to assess the associations between night rMSSD and PM<sub>2.5 </sub>metal exposures both with and without adjustment for total PM<sub>2.5</sub>. Matched ECG measurements from the non-workday were used to control for individual cardiac risk factors and models were also adjusted for smoking status. To address collinearity between PM<sub>2.5 </sub>and metal content, we used a two-step approach that treated the residuals from linear regression models of each metal on PM<sub>2.5 </sub>as surrogates for the differential effects of metal exposures in models for night rMSSD.</p> <p>Results</p> <p>The median PM<sub>2.5 </sub>exposure was 650 μg/m<sup>3</sup>; median metal exposures for iron, manganese, aluminum, copper, zinc, chromium, lead, and nickel ranged from 226 μg/m<sup>3 </sup>to non-detectable. We found inverse linear associations in exposure-response models with increased metal exposures associated with decreased night rMSSD. A statistically significant association for manganese was observed, with a decline of 0.130 msec (95% CI: -0.162, -0.098) in night rMSSD for every 1 μg/m<sup>3 </sup>increase in manganese. However, even after adjusting for individual metals, increases in total PM<sub>2.5 </sub>exposures were associated with declines in night rMSSD.</p> <p>Conclusion</p> <p>These results support the cardiotoxicity of PM<sub>2.5 </sub>metal exposures, specifically manganese. However the metal component alone did not account for the observed declines in night HRV. Therefore, results suggest the importance of other PM elemental components.</p

    Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance

    Get PDF
    Salmonella enterica serovar Typhimurium is capable of swarming over semi-solid surfaces. Although its swarming behavior shares many readily observable similarities with other swarming bacteria, the phenomenon remains somewhat of an enigma in this bacterium since some attributes skew away from the better characterized systems. Swarming is quite distinct from the classic swimming motility, as there is a prerequisite for cells to first undergo a morphological transformation into swarmer cells. In some organisms, swarming is controlled by quorum sensing, and in others, swarming has been shown to be coupled to increased expression of important virulence factors. Swarming in serovar Typhimurium is coupled to elevated resistance to a wide variety of structurally and functionally distinct classes of antimicrobial compounds. As serovar Typhimurium differentiates into swarm cells, the pmrHFIJKLM operon is up-regulated, resulting in a more positively charged LPS core. Furthermore, as swarm cells begin to de-differentiate, the pmr operon expression is down-regulated, rapidly reaching the levels observed in swim cells. This is one potential mechanism which confers swarm cells increased resistance to antibiotics such as the cationic antimicrobial peptides. However, additional mechanisms are likely associated with the cells in the swarm state that confer elevated resistance to such a broad spectrum of antimicrobial agents
    • …
    corecore