2,719 research outputs found
Study of LiquidâSolid Mass Transfer and Hydrodynamics in Micropacked Bed with GasâLiquid Flow
The volumetric liquidâsolid (L-S) mass transfer coefficient under gasâliquid (G-L) two-phase flow in a silicon-chip-based micropacked bed reactor (MPBR) was studied using the copper dissolution method and was related to the reactor hydrodynamic behavior. Using a high-speed camera and a robust computational image analysis method that selectively analyzed the bed voidage around the copper particles, the observed hydrodynamics were directly related to the L-S mass transfer rates in the MPBR. This hydrodynamic study revealed different pulsing structures inside the packed copper bed depending on the flow patterns established preceding the packed bed upon increasing gas velocity. A âliquid-dominated slugâ flow regime was associated with an upstream slug flow feed. A âsparse slugâ flow regime developed with an upstream slug-annular flow feed. At higher gas velocity, a âgas continuous with pulsingâ regime developed with an annular flow feed, which had similar features to the pulsing flow in macroscale packed beds, but it was sensitive and easily destabilized by disturbances from upstream or downstream pressure fluctuations. The volumetric L-S mass transfer coefficient decreased with increasing gas velocity under the liquid-dominated slug flow regime and became rather less affected under the sparse slug flow regime. By resolving the transition from the liquid-dominated slug flow to the sparse slug flow and capturing the onset of the gas-continuous with pulsing regime, we gained new insights into the hydrodynamic effects of G-L flows on the L-S mass transfer rates in a MPBR
Expression of tung tree diacylglycerol acyltransferase 1 in E. coli
<p>Abstract</p> <p>Background</p> <p>Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Database search has identified at least 59 DGAT1 sequences from 48 organisms, but the expression of any DGAT1 as a full-length protein in <it>E. coli </it>had not been reported because DGAT1s are integral membrane proteins and difficult to express and purify. The objective of this study was to establish a procedure for expressing full-length DGAT1 in <it>E. coli</it>.</p> <p>Results</p> <p>An expression plasmid containing the open reading frame for tung tree (<it>Vernicia fordii</it>) DGAT1 fused to maltose binding protein and poly-histidine affinity tags was constructed and expressed in <it>E. coli </it>BL21(DE3). Immunoblotting showed that the recombinant DGAT1 (rDGAT1) was expressed, but mostly targeted to the membranes and insoluble fractions. Extensive degradation also occurred. Nonetheless, the fusion protein was partially purified from the soluble fraction by Ni-NTA and amylose resin affinity chromatography. Multiple proteins co-purified with DGAT1 fusion protein. These fractions appeared yellow in color and contained fatty acids. The rDGAT1 was solubilized from the insoluble fraction by seven detergents and urea, with SDS and Triton X-100 being the most effective detergents. The solubilized rDGAT1 was partially purified by Ni-NTA affinity chromatography. PreScission protease digestion confirmed the identity of rDGAT1 and showed extensive precipitation following Ni-NTA affinity purification.</p> <p>Conclusions</p> <p>This study reports the first procedure for expressing full-length DGAT1 from any species using a bacterial expression system. The results suggest that recombinant DGAT1 is degraded extensively from the carboxyl terminus and associated with other proteins, lipids, and membranes.</p
Ultrahard carbon film from epitaxial two-layer graphene
Atomically thin graphene exhibits fascinating mechanical properties, although
its hardness and transverse stiffness are inferior to those of diamond. To
date, there hasn't been any practical demonstration of the transformation of
multi-layer graphene into diamond-like ultra-hard structures. Here we show that
at room temperature and after nano-indentation, two-layer graphene on SiC(0001)
exhibits a transverse stiffness and hardness comparable to diamond, resisting
to perforation with a diamond indenter, and showing a reversible drop in
electrical conductivity upon indentation. Density functional theory
calculations suggest that upon compression, the two-layer graphene film
transforms into a diamond-like film, producing both elastic deformations and
sp2-to-sp3 chemical changes. Experiments and calculations show that this
reversible phase change is not observed for a single buffer layer on SiC or
graphene films thicker than 3 to 5 layers. Indeed, calculations show that
whereas in two-layer graphene layer-stacking configuration controls the
conformation of the diamond-like film, in a multilayer film it hinders the
phase transformation.Comment: Published online on Nature Nanotechnology on December 18, 201
Greening China naturally
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in AMBIO: A Journal of the Human Environment 40 (2011): 828-831, doi:10.1007/s13280-011-0150-8.China leads the world in afforestation, and is one of the few countries whose forested area is increasing. However, this massive ââgreeningââ effort has been less effective than expected; afforestation has sometimes produced unintended environmental, ecological, and socioeconomic consequences, and has failed to achieve the desired ecological benefits. Where afforestation has succeeded, the approach was tailored to local environmental
conditions. Using the right plant species or species composition for the site and considering alternatives such as grassland restoration have been important success factors. To expand this success, government policy should shift from a forest-based approach to a results-based approach. In addition, long-term monitoring must be implemented to provide the data needed to develop a cost-effective, scientifically informed restoration policy.This work was supported by the Fundamental Research Funds for the Central Universities (HJ2010-3) and the CAS/ SAFEA International Partnership Program for Creative Research Teams of ââEcosystem Processes and Servicesââ
Sustained CD28 Expression Delays Multiple Features of Replicative Senescence in Human CD8 T Lymphocytes
CD28 costimulatory signal transduction in T lymphocytes is essential for optimal telomerase activity, stabilization of cytokine mRNAs, and glucose metabolism. During aging and chronic infection with HIV-1, there are increased proportions of CD8 T lymphocytes that lack CD28 expression and show additional features of replicative senescence. Moreover, the abundance of these cells correlates with decreased vaccine responsiveness, early mortality in the very old, and accelerated HIV disease progression. Here, we show that sustained expression of CD28, via gene transduction, retards the process of replicative senescence, as evidenced by enhanced telomerase activity, increased overall proliferative potential, and reduced secretion of pro-inflammatory cytokines. Nevertheless, the transduced cultures eventually do reach senescence, which is associated with increased CTLA-4 gene expression and a loss of CD28 cell surface expression. These findings further elucidate the central role of CD28 in the replicative senescence program, and may ultimately lead to novel therapies for diseases associated with replicative senescence
An international prospective cohort study of mobile phone users and health (COSMOS): Factors affecting validity of self-reported mobile phone use.
This study investigates validity of self-reported mobile phone use in a subset of 75 993 adults from the COSMOS cohort study. Agreement between self-reported and operator-derived mobile call frequency and duration for a 3-month period was assessed using Cohen's weighted Kappa (Îș). Sensitivity and specificity of both self-reported high (â„10 calls/day or â„4h/week) and low (â€6 calls/week or <30min/week) mobile phone use were calculated, as compared to operator data. For users of one mobile phone, agreement was fair for call frequency (Îș=0.35, 95% CI: 0.35, 0.36) and moderate for call duration (Îș=0.50, 95% CI: 0.49, 0.50). Self-reported low call frequency and duration demonstrated high sensitivity (87% and 76% respectively), but for high call frequency and duration sensitivity was lower (38% and 56% respectively), reflecting a tendency for greater underestimation than overestimation. Validity of self-reported mobile phone use was lower in women, younger age groups and those reporting symptoms during/shortly after using a mobile phone. This study highlights the ongoing value of using self-report data to measure mobile phone use. Furthermore, compared to continuous scale estimates used by previous studies, categorical response options used in COSMOS appear to improve validity considerably, most likely by preventing unrealistically high estimates from being reported
Electrically driven thermal light emission from individual single-walled carbon nanotubes
Light emission from nanostructures exhibits rich quantum effects and has
broad applications. Single-walled carbon nanotubes (SWNTs) are one-dimensional
(1D) metals or semiconductors, in which large number of electronic states in a
narrow range of energies, known as van Hove singularities, can lead to strong
spectral transitions. Photoluminescence and electroluminescence involving
interband transitions and excitons have been observed in semiconducting SWNTs,
but are not expected in metallic tubes due to non-radiative relaxations. Here,
we show that in the negative differential conductance regime, a suspended
quasi-metallic SWNT (QM-SWNT) emits light due to joule-heating, displaying
strong peaks in the visible and infrared corresponding to interband
transitions. This is a result of thermal light emission in 1D, in stark
contrast with featureless blackbody-like emission observed in large bundles of
SWNTs or multi-walled nanotubes. This allows for probing of the electronic
temperature and non-equilibrium hot optical phonons in joule-heated QM-SWNTs
Human Decision-Making in Multi-Agent Systems
In order to avoid suboptimal collective behaviors and resolve social dilemmas, researchers have tried to understand how humans make decisions when interacting with other humans or smart machines and carried out theoretical and experimental studies aimed at influencing decision-making dynamics in large populations. We identify the key challenges and open issues in the related research, list a few popular models with the corresponding results, and point out future research directions
Solving the mu problem with a heavy Higgs boson
We discuss the generation of the mu-term in a class of supersymmetric models
characterized by a low energy effective superpotential containing a term lambda
S H_1 H_2 with a large coupling lambda~2. These models generically predict a
lightest Higgs boson well above the LEP limit of 114 GeV and have been shown to
be compatible with the unification of gauge couplings. Here we discuss a
specific example where the superpotential has no dimensionful parameters and we
point out the relation between the generated mu-term and the mass of the
lightest Higgs boson. We discuss the fine-tuning of the model and we find that
the generation of a phenomenologically viable mu-term fits very well with a
heavy lightest Higgs boson and a low degree of fine-tuning. We discuss
experimental constraints from collider direct searches, precision data, thermal
relic dark matter abundance, and WIMP searches finding that the most natural
region of the parameter space is still allowed by current experiments. We
analyse bounds on the masses of the superpartners coming from Naturalness
arguments and discuss the main signatures of the model for the LHC and future
WIMP searches.Comment: Extended discussion of the LHC phenomenology, as published on JHEP
plus an addendum on the existence of further extremal points of the
potential. 47 pages, 16 figure
Mechanical Strength of 17 134 Model Proteins and Cysteine Slipknots
A new theoretical survey of proteins' resistance to constant speed stretching
is performed for a set of 17 134 proteins as described by a structure-based
model. The proteins selected have no gaps in their structure determination and
consist of no more than 250 amino acids. Our previous studies have dealt with
7510 proteins of no more than 150 amino acids. The proteins are ranked
according to the strength of the resistance. Most of the predicted top-strength
proteins have not yet been studied experimentally. Architectures and folds
which are likely to yield large forces are identified. New types of potent
force clamps are discovered. They involve disulphide bridges and, in
particular, cysteine slipknots. An effective energy parameter of the model is
estimated by comparing the theoretical data on characteristic forces to the
corresponding experimental values combined with an extrapolation of the
theoretical data to the experimental pulling speeds. These studies provide
guidance for future experiments on single molecule manipulation and should lead
to selection of proteins for applications. A new class of proteins, involving
cystein slipknots, is identified as one that is expected to lead to the
strongest force clamps known. This class is characterized through molecular
dynamics simulations.Comment: 40 pages, 13 PostScript figure
- âŠ