76 research outputs found

    Combining Nitrous Oxide with Carbon Dioxide Decreases the Time to Loss of Consciousness during Euthanasia in Mice — Refinement of Animal Welfare?

    Get PDF
    Carbon dioxide (CO2) is the most commonly used euthanasia agent for rodents despite potentially causing pain and distress. Nitrous oxide is used in man to speed induction of anaesthesia with volatile anaesthetics, via a mechanism referred to as the “second gas” effect. We therefore evaluated the addition of Nitrous Oxide (N2O) to a rising CO2 concentration could be used as a welfare refinement of the euthanasia process in mice, by shortening the duration of conscious exposure to CO2. Firstly, to assess the effect of N2O on the induction of anaesthesia in mice, 12 female C57Bl/6 mice were anaesthetized in a crossover protocol with the following combinations: Isoflurane (5%)+O2 (95%); Isoflurane (5%)+N2O (75%)+O2 (25%) and N2O (75%)+O2 (25%) with a total flow rate of 3l/min (into a 7l induction chamber). The addition of N2O to isoflurane reduced the time to loss of the righting reflex by 17.6%. Secondly, 18 C57Bl/6 and 18 CD1 mice were individually euthanized by gradually filling the induction chamber with either: CO2 (20% of the chamber volume.min−1); CO2+N2O (20 and 60% of the chamber volume.min−1 respectively); or CO2+Nitrogen (N2) (20 and 60% of the chamber volume.min−1). Arterial partial pressure (Pa) of O2 and CO2 were measured as well as blood pH and lactate. When compared to the gradually rising CO2 euthanasia, addition of a high concentration of N2O to CO2 lowered the time to loss of righting reflex by 10.3% (P<0.001), lead to a lower PaO2 (12.55±3.67 mmHg, P<0.001), a higher lactataemia (4.64±1.04 mmol.l−1, P = 0.026), without any behaviour indicative of distress. Nitrous oxide reduces the time of conscious exposure to gradually rising CO2 during euthanasia and hence may reduce the duration of any stress or distress to which mice are exposed during euthanasia

    Inhaled furosemide for relief of air hunger versus sense of breathing effort: a randomized controlled trial

    Get PDF
    Background. Inhaled furosemide offers a potentially novel treatment for dyspnoea, which may reflect modulation of pulmonary stretch receptor feedback to the brain. Specificity of relief is unclear because different neural pathways may account for different components of clinical dyspnoea. Our objective was to evaluate if inhaled furosemide relieves the air hunger component (uncomfortable urge to breathe) but not the sense of breathing work/effort of dyspnoea. Methods. A randomised, double blind, placebo-controlled crossover trial in 16 healthy volunteers studied in a university research laboratory. Each participant received 3 mist inhalations (either 40 mg furosemide or 4 ml saline) separated by 30–60 min on 2 test days. Each participant was randomised to mist order ‘furosemide-saline-furosemide’ (n- = 8) or ‘saline-furosemide-saline’ (n = 8) on both days. One day involved hypercapnic air hunger tests (mean ± SD PCO2 = 50 ± 3.7 mmHg; constrained ventilation = 9 ± 1.5 L/min), the other involved work/effort tests with targeted ventilation (17 ± 3.1 L/min) and external resistive load (20cmH2O/L/s). Primary outcome was ratings of air hunger or work/effort every 15 s on a visual analogue scale. During saline inhalations, 1.5 mg furosemide was infused intravenously to match the expected systemic absorption from the lungs when furosemide is inhaled. Corresponding infusions of saline during furosemide inhalations maintained procedural blinding. Average visual analogue scale ratings (%full scale) during the last minute of air hunger or work/effort stimuli were analysed using Linear Mixed Methods. Results. Data from all 16 participants were analysed. Inhaled furosemide relative to inhaled saline significantly improved visual analogues scale ratings of air hunger (Least Squares Mean ± SE − 9.7 ± 2%; p = 0.0015) but not work/effort (+ 1.6 ± 2%; p = 0.903). There were no significant adverse events. Conclusions. Inhaled furosemide was effective at relieving laboratory induced air hunger but not work/effort in healthy adults; this is consistent with the notion that modulation of pulmonary stretch receptor feedback by inhaled furosemide leads to dyspnoea relief that is specific to air hunger, the most unpleasant quality of dyspnoea

    Central Nervous System Changes in Pediatric Heart Failure: A Volumetric Study

    Get PDF
    Autonomic dysfunction, mood disturbances, and memory deficits appear in pediatric and adult heart failure (HF). Brain areas controlling these functions show injury in adult HF patients, many of whom have comorbid cerebrovascular disease. We examined whether similar brain pathology develops in pediatric subjects without such comorbidities. In this study, high-resolution T1 brain magnetic resonance images were collected from seven severe HF subjects age (age 8–18 years [mean 13]; left ventricular shortening 9 to 19% [median 14%]) and seven age-matched healthy controls (age 8–18 years [mean 13]). After segmentation into gray matter (GM), white matter, and cerebrospinal fluid (CSF), regional volume loss between groups was determined by voxel-based morphometry. GM volume loss appeared on all HF scans, but ischemic changes and infarcts were absent. HF subjects showed greater CSF volume than controls (mean ± SD 0.30 ± 0.04 vs. 0.25 ± 0.04 l, P = 0.03), but total intracranial volume was identical (1.39 ± 0.11 vs. 1.39 ± 0.09 l, P = NS). Regional GM volume reduction appeared in the right and left posterior hippocampus, bilateral mid-insulae, and the superior medial frontal gyrus and mid-cingulate cortex of HF subjects (threshold P < 0.001). No volume-loss sites appeared in control brains. We conclude that pediatric HF patients show brain GM loss in areas similar to those of adult HF subjects. Substantial changes emerged in sites that regulate autonomic function as well as mood, personality and short-term memory. In the absence of thromboembolic disease and many comorbid conditions found in adult HF patients, pediatric HF patients show significant, focal GM volume loss, which may coincide with the multiple neurologic and psychological changes observed in patients with HF

    Structural Brain Changes Related to Disease Duration in Patients with Asthma

    Get PDF
    Dyspnea is the impairing, cardinal symptom patients with asthma repeatedly experience over the course of the disease. However, its accurate perception is also crucial for timely initiation of treatment. Reduced perception of dyspnea is associated with negative treatment outcome, but the underlying brain mechanisms of perceived dyspnea in patients with asthma remain poorly understood. We examined whether increasing disease duration in fourteen patients with mild-to-moderate asthma is related to structural brain changes in the insular cortex and brainstem periaqueductal grey (PAG). In addition, the association between structural brain changes and perceived dyspnea were studied. By using magnetic resonance imaging in combination with voxel-based morphometry, gray matter volumes of the insular cortex and the PAG were analysed and correlated with asthma duration and perceived affective unpleasantness of resistive load induced dyspnea. Whereas no associations were observed for the insular cortex, longer duration of asthma was associated with increased gray matter volume in the PAG. Moreover, increased PAG gray matter volume was related to reduced ratings of dyspnea unpleasantness. Our results demonstrate that increasing disease duration is associated with increased gray matter volume in the brainstem PAG in patients with mild-to-moderate asthma. This structural brain change might contribute to the reduced perception of dyspnea in some patients with asthma and negatively impact the treatment outcome

    Incidental sounds of locomotion in animal cognition

    Get PDF
    The highly synchronized formations that characterize schooling in fish and the flight of certain bird groups have frequently been explained as reducing energy expenditure. I present an alternative, or complimentary, hypothesis that synchronization of group movements may improve hearing perception. Although incidental sounds produced as a by-product of locomotion (ISOL) will be an almost constant presence to most animals, the impact on perception and cognition has been little discussed. A consequence of ISOL may be masking of critical sound signals in the surroundings. Birds in flight may generate significant noise; some produce wing beats that are readily heard on the ground at some distance from the source. Synchronization of group movements might reduce auditory masking through periods of relative silence and facilitate auditory grouping processes. Respiratory locomotor coupling and intermittent flight may be other means of reducing masking and improving hearing perception. A distinct border between ISOL and communicative signals is difficult to delineate. ISOL seems to be used by schooling fish as an aid to staying in formation and avoiding collisions. Bird and bat flocks may use ISOL in an analogous way. ISOL and interaction with animal perception, cognition, and synchronized behavior provide an interesting area for future study

    Non-pharmacological Interventions for Breathlessness in Cancer

    Get PDF
    Introduction: Breathlessness is a common and distressing symptom in people with advanced cancer of all etiologies, often co-existing with cough and fatigue. Its incidence and severity increase as death approaches. Growing evidence suggests that non-pharmacological interventions, delivered as a complex intervention, can increase quality of life of those living with cancer-related breathlessness, and those closest to them. It is clear that these evidence-based treatments are not yet consistently available to patients and families, leading to significant avoidable suffering. Breathlessness interventions may not always reduce the absolute level of the symptom. They may reduce the individual’s awareness of their breathlessness, or increase self-efficacy or knowledge of how to manage it, i.e. they have an effect on its central perception
    corecore