1,477 research outputs found

    Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels

    Get PDF
    The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the β1-β2 loop or through pre-TM1. The β1-β2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs. © 2013 Mowrey et al

    Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial

    Get PDF
    BACKGROUND: Chlamydia is the most common sexually transmitted bacterial infection worldwide. National screening programmes and antibiotic treatment have failed to decrease incidence, and to date no vaccines against genital chlamydia have been tested in clinical trials. We aimed to assess the safety and immunogenicity, in humans, of a novel chlamydia vaccine based on a recombinant protein subunit (CTH522) in a prime-boost immunisation schedule. METHODS: This phase 1, first-in-human, double-blind, parallel, randomised, placebo-controlled trial was done at Hammersmith Hospital in London, UK, in healthy women aged 19-45 years. Participants were randomly assigned (3:3:1) to three groups: CTH522 adjuvanted with CAF01 liposomes (CTH522:CAF01), CTH522 adjuvanted with aluminium hydroxide (CTH522:AH), or placebo (saline). Participants received three intramuscular injections of 85 μg vaccine (with adjuvant) or placebo to the deltoid region of the arm at 0, 1, and 4 months, followed by two intranasal administrations of 30 μg unadjuvanted vaccine or placebo (one in each nostril) at months 4·5 and 5·0. The primary outcome was safety and the secondary outcome was humoral immunogenicity (anti-CTH522 IgG seroconversion). This study is registered with Clinicaltrials.gov, number NCT02787109. FINDINGS: Between Aug 15, 2016, and Feb 13, 2017, 35 women were randomly assigned (15 to CTH522:CAF01, 15 to CTH522:AH, and five to placebo). 32 (91%) received all five vaccinations and all participants were included in the intention-to-treat analyses. No related serious adverse reactions were reported, and the most frequent adverse events were mild local injection-site reactions, which were reported in all (15 [100%] of 15) participants in the two vaccine groups and in three (60%) of five participants in the placebo group (p=0·0526 for both comparisons). Intranasal vaccination was not associated with a higher frequency of related local reactions (reported in seven [47%] of 15 participants in the active treatment groups vs three [60%] of five in the placebo group; p=1·000). Both CTH522:CAF01 and CTH522:AH induced anti-CTH522 IgG seroconversion in 15 (100%) of 15 participants after five immunisations, whereas no participants in the placebo group seroconverted. CTH522:CAF01 showed accelerated seroconversion, increased IgG titres, an enhanced mucosal antibody profile, and a more consistent cell-mediated immune response profile compared with CTH522:AH. INTERPRETATION: CTH522 adjuvanted with either CAF01 or aluminium hydroxide appears to be safe and well tolerated. Both vaccines were immunogenic, although CTH522:CAF01 had a better immunogenicity profile, holding promise for further clinical development. FUNDING: European Commission and The Innovation Fund Denmark

    Substrate Profiling of Tobacco Etch Virus Protease Using a Novel Fluorescence-Assisted Whole-Cell Assay

    Get PDF
    Site-specific proteolysis of proteins plays an important role in many cellular functions and is often key to the virulence of infectious organisms. Efficient methods for characterization of proteases and their substrates will therefore help us understand these fundamental processes and thereby hopefully point towards new therapeutic strategies. Here, a novel whole-cell in vivo method was used to investigate the substrate preference of the sequence specific tobacco etch virus protease (TEVp). The assay, which utilizes protease-mediated intracellular rescue of genetically encoded short-lived fluorescent substrate reporters to enhance the fluorescence of the entire cell, allowed subtle differences in the processing efficiency of closely related substrate peptides to be detected. Quantitative screening of large combinatorial substrate libraries, through flow cytometry analysis and cell sorting, enabled identification of optimal substrates for TEVp. The peptide, ENLYFQG, identical to the protease's natural substrate peptide, emerged as a strong consensus cleavage sequence, and position P3 (tyrosine, Y) and P1 (glutamine, Q) within the substrate peptide were confirmed as being the most important specificity determinants. In position P1′, glycine (G), serine (S), cysteine (C), alanine (A) and arginine (R) were among the most prevalent residues observed, all known to generate functional TEVp substrates and largely in line with other published studies stating that there is a strong preference for short aliphatic residues in this position. Interestingly, given the complex hydrogen-bonding network that the P6 glutamate (E) is engaged in within the substrate-enzyme complex, an unexpectedly relaxed residue preference was revealed for this position, which has not been reported earlier. Thus, in the light of our results, we believe that our assay, besides enabling protease substrate profiling, also may serve as a highly competitive platform for directed evolution of proteases and their substrates

    Natural CD4+ T-Cell Responses against Indoleamine 2,3-Dioxygenase

    Get PDF
    The enzyme indoleamine 2,3-dioxygenase (IDO) contributes to immune tolerance in a variety of settings. In cancer IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it endorses the establishment of peripheral immune tolerance to tumor antigens. Recently, we described cytotoxic CD8(+) T-cell reactivity towards IDO-derived peptides.In the present study, we show that CD4(+) helper T cells additionally spontaneously recognize IDO. Hence, we scrutinized the vicinity of the previously described HLA-A*0201-restricted IDO-epitope for CD4(+) T-cell epitopes. We demonstrated the presence of naturally occurring IDO-specific CD4(+) T cells in cancer patients and to a lesser extent in healthy donors by cytokine release ELISPOT. IDO-reactive CD4(+) T cells released IFN-γ, TNF-α, as well as IL-17. We confirm HLA class II-restriction by the addition of HLA class II specific blocking antibodies. In addition, we detected a trend between class I- and class II-restricted IDO responses and detected an association between IDO-specific CD4(+) T cells and CD8(+) CMV-responses. Finally, we could detect IL-10 releasing IDO-reactive CD4(+) T cells.IDO is spontaneously recognized by HLA class II-restricted, CD4(+) T cells in cancer patients and in healthy individuals. IDO-specific T cells may participate in immune-regulatory networks where the activation of pro-inflammatory IDO-specific CD4(+) responses may well overcome or delay the immune suppressive actions of the IDO-protein, which are otherwise a consequence of the early expression of IDO in maturing antigen presenting cells. In contrast, IDO-specific regulatory T cells may enhance IDO-mediated immune suppression

    The chronic pain coping inventory: Confirmatory factor analysis of the French version

    Get PDF
    BACKGROUND: Coping strategies are among the psychosocial factors hypothesized to contribute to the development of chronic musculoskeletal disability. The Chronic Pain Coping Inventory (CPCI) was developed to assess eight behavioral coping strategies targeted in multidisciplinary pain treatment (Guarding, Resting, Asking for Assistance, Task Persistence, Relaxation, Exercise/Stretch, Coping Self-Statements and Seeking Social Support). The present study had two objectives. First, it aimed at measuring the internal consistency and the construct validity of the French version of the CPCI. Second, it aimed to verify if, as suggested by the CPCI authors, the scales of this instrument can be grouped according to the following coping families: Illness-focused coping and Wellness-focused coping. METHOD: The CPCI was translated into French with the forward and backward translation procedure. To evaluate internal consistency, Cronbach's alphas were computed. Construct validity of the inventory was estimated through confirmatory factor analysis (CFA) in two samples: a group of 439 Quebecois workers on sick leave in the sub-acute stage of low back pain (less than 84 days after the work accident) and a group of 388 French chronic pain patients seen in a pain clinic. A CFA was also performed to evaluate if the CPCI scales were grouped into two coping families (i.e. Wellness-focused and Illness-focused coping). RESULTS: The French version of the CPCI had adequate internal consistency in both samples. The CFA confirmed the eight-scale structure of the CPCI. A series of second-order CFA confirmed the composition of the Illness-focused family of coping (Guarding, Resting and Asking for Assistance). However, the composition of the Wellness-focused family of coping (Relaxation, Exercise/Stretch, Coping Self-Statements and Seeking Social Support) was different than the one proposed by the authors of the CPCI. Also, a positive correlation was observed between Illness and Wellness coping families. CONCLUSION: The present study indicates that the internal consistency and construct validity of the French version of the CPCI were adequate, but the grouping and labeling of the CPCI families of coping are debatable and deserve further analysis in the context of musculoskeletal and pain rehabilitation

    Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    Get PDF
    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear model of critical shear stress and eroded mass is proposed to simulate small-depth erosion, assuming that the applied and critical shear stresses quickly reach equilibrium

    Impaired Growth and Force Production in Skeletal Muscles of Young Partially Pancreatectomized Rats: A Model of Adolescent Type 1 Diabetic Myopathy?

    Get PDF
    This present study investigated the temporal effects of type 1 diabetes mellitus (T1DM) on adolescent skeletal muscle growth, morphology and contractile properties using a 90% partial pancreatecomy (Px) model of the disease. Four week-old male Sprague-Dawley rats were randomly assigned to Px (n = 25) or Sham (n = 24) surgery groups and euthanized at 4 or 8 weeks following an in situ assessment of muscle force production. Compared to Shams, Px were hyperglycemic (>15 mM) and displayed attenuated body mass gains by days 2 and 4, respectively (both P<0.05). Absolute maximal force production of the gastrocnemius plantaris soleus complex (GPS) was 30% and 50% lower in Px vs. Shams at 4 and 8 weeks, respectively (P<0.01). GP mass was 35% lower in Px vs Shams at 4 weeks (1.24±0.06 g vs. 1.93±0.03 g, P<0.05) and 45% lower at 8 weeks (1.57±0.12 vs. 2.80±0.06, P<0.05). GP fiber area was 15–20% lower in Px vs. Shams at 4 weeks in all fiber types. At 8 weeks, GP type I and II fiber areas were ∼25% and 40% less, respectively, in Px vs. Shams (group by fiber type interactions, P<0.05). Phosphorylation states of 4E-BP1 and S6K1 following leucine gavage increased 2.0- and 3.5-fold, respectively, in Shams but not in Px. Px rats also had impaired rates of muscle protein synthesis in the basal state and in response to gavage. Taken together, these data indicate that exposure of growing skeletal muscle to uncontrolled T1DM significantly impairs muscle growth and function largely as a result of impaired protein synthesis in type II fibers

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
    • …
    corecore