29 research outputs found

    A copula model for marked point processes

    Get PDF
    The final publication (Diao, Liqun, Richard J. Cook, and Ker-Ai Lee. (2013) A copula model for marked point processes. Lifetime Data Analysis, 19(4): 463-489) is available at Springer via http://dx.doi.org/10.1007/s10985-013-9259-3Many chronic diseases feature recurring clinically important events. In addition, however, there often exists a random variable which is realized upon the occurrence of each event reflecting the severity of the event, a cost associated with it, or possibly a short term response indicating the effect of a therapeutic intervention. We describe a novel model for a marked point process which incorporates a dependence between continuous marks and the event process through the use of a copula function. The copula formulation ensures that event times can be modeled by any intensity function for point processes, and any multivariate model can be specified for the continuous marks. The relative efficiency of joint versus separate analyses of the event times and the marks is examined through simulation under random censoring. An application to data from a recent trial in transfusion medicine is given for illustration.Natural Sciences and Engineering Research Council of Canada (RGPIN 155849); Canadian Institutes for Health Research (FRN 13887); Canada Research Chair (Tier 1) – CIHR funded (950-226626

    How to handle mortality when investigating length of hospital stay and time to clinical stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospital length of stay (LOS) and time for a patient to reach clinical stability (TCS) have increasingly become important outcomes when investigating ways in which to combat Community Acquired Pneumonia (CAP). Difficulties arise when deciding how to handle in-hospital mortality. Ad-hoc approaches that are commonly used to handle time to event outcomes with mortality can give disparate results and provide conflicting conclusions based on the same data. To ensure compatibility among studies investigating these outcomes, this type of data should be handled in a consistent and appropriate fashion.</p> <p>Methods</p> <p>Using both simulated data and data from the international Community Acquired Pneumonia Organization (CAPO) database, we evaluate two ad-hoc approaches for handling mortality when estimating the probability of hospital discharge and clinical stability: 1) restricting analysis to those patients who lived, and 2) assigning individuals who die the "worst" outcome (right-censoring them at the longest recorded LOS or TCS). Estimated probability distributions based on these approaches are compared with right-censoring the individuals who died at time of death (the complement of the Kaplan-Meier (KM) estimator), and treating death as a competing risk (the cumulative incidence estimator). Tests for differences in probability distributions based on the four methods are also contrasted.</p> <p>Results</p> <p>The two ad-hoc approaches give different estimates of the probability of discharge and clinical stability. Analysis restricted to patients who survived is conceptually problematic, as estimation is conditioned on events that happen <it>at a future time</it>. Estimation based on assigning those patients who died the worst outcome (longest LOS and TCS) coincides with the complement of the KM estimator based on the subdistribution hazard, which has been previously shown to be equivalent to the cumulative incidence estimator. However, in either case the time to in-hospital mortality is ignored, preventing simultaneous assessment of patient mortality in addition to LOS and/or TCS. The power to detect differences in underlying hazards of discharge between patient populations differs for test statistics based on the four approaches, and depends on the underlying hazard ratio of mortality between the patient groups.</p> <p>Conclusions</p> <p>Treating death as a competing risk gives estimators which address the clinical questions of interest, and allows for simultaneous modelling of both in-hospital mortality and TCS / LOS. This article advocates treating mortality as a competing risk when investigating other time related outcomes.</p

    A molecular analysis of desiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimus superbus using expressed sequenced tags

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some organisms can survive extreme desiccation by entering into a state of suspended animation known as anhydrobiosis. <it>Panagrolaimus superbus </it>is a free-living anhydrobiotic nematode that can survive rapid environmental desiccation. The mechanisms that <it>P. superbus </it>uses to combat the potentially lethal effects of cellular dehydration may include the constitutive and inducible expression of protective molecules, along with behavioural and/or morphological adaptations that slow the rate of cellular water loss. In addition, inducible repair and revival programmes may also be required for successful rehydration and recovery from anhydrobiosis.</p> <p>Results</p> <p>To identify constitutively expressed candidate anhydrobiotic genes we obtained 9,216 ESTs from an unstressed mixed stage population of <it>P. superbus</it>. We derived 4,009 unigenes from these ESTs. These unigene annotations and sequences can be accessed at <url>http://www.nematodes.org/nembase4/species_info.php?species=PSC</url>. We manually annotated a set of 187 constitutively expressed candidate anhydrobiotic genes from <it>P. superbus</it>. Notable among those is a putative lineage expansion of the <it>lea </it>(late embryogenesis abundant) gene family. The most abundantly expressed sequence was a member of the nematode specific <it>sxp/ral-2 </it>family that is highly expressed in parasitic nematodes and secreted onto the surface of the nematodes' cuticles. There were 2,059 novel unigenes (51.7% of the total), 149 of which are predicted to encode intrinsically disordered proteins lacking a fixed tertiary structure. One unigene may encode an exo-β-1,3-glucanase (GHF5 family), most similar to a sequence from <it>Phytophthora infestans</it>. GHF5 enzymes have been reported from several species of plant parasitic nematodes, with horizontal gene transfer (HGT) from bacteria proposed to explain their evolutionary origin. This <it>P. superbus </it>sequence represents another possible HGT event within the Nematoda. The expression of five of the 19 putative stress response genes tested was upregulated in response to desiccation. These were the antioxidants <it>glutathione peroxidase, dj-1 </it>and <it>1-Cys peroxiredoxin</it>, an <it>shsp </it>sequence and an <it>lea </it>gene.</p> <p>Conclusions</p> <p><it>P. superbus </it>appears to utilise a strategy of combined constitutive and inducible gene expression in preparation for entry into anhydrobiosis. The apparent lineage expansion of <it>lea </it>genes, together with their constitutive and inducible expression, suggests that LEA3 proteins are important components of the anhydrobiotic protection repertoire of <it>P. superbus</it>.</p

    Stability of barley aleurone transcripts: Dependence on protein synthesis, influence of the starchy endosperm and destabilization by GA(3)

    No full text
    We have studied the stability of Barley aleurone and embryo expressed (Balem) transcripts in aleurone layers. The Per1, Ole1 and Ole2 transcripts are abundant during desiccation and in dry resting seeds, while B12D and B22E transcripts are expressed mainly during seed maturation and germination. From 21 to 40 days post anthesis (DPA) incubation of aleurone layers resulted in a substantial, but differential reduction in the levels of these transcripts. In contrast, Balem transcript levels in aleurone layers of incubated embryoless grains were (except for B22E) similar to those of freshly dissected layers. Cycloheximide lowered transcript levels significantly. This indicates that a protein-synthesis-dependent mRNA-stabilizing mechanism is active in the aleurone cells when attached to the starchy endosperm. At the onset of seed desiccation (40 DPA), half-lives of transcripts to be stored in the dry seed were up to several days longer than the half-life of B22E, which decreases during seed maturation. While the Per1, Ole1 and Ole2 transcript levels decline rapidly in the aleurone layers of mature, germinating seeds, the genes are actively transcribed and their transcripts highly stable in the aleurone of incubated embryoless seeds, The expression of Ole1 and Ole2, as well as Per1, can be repressed 100-1000-fold by gibberellic acid (GA,) in a dose-dependent manner. Abscisic acid can counteract the GA, repression. Incubations with transcriptional and translational inhibitors indicate that GA, inhibits the transcription of these genes and at the same time induces a protein-synthesis-dependent mechanism destabilizing their mRNA molecules present

    Differential regulation of the barley (Hordeum vulgare) transcripts B22E and B12D in mature aleurone layers

    No full text
    Previously, B12D and B22E have been characterized as Barley aleurone and embryo (Balem) transcripts, expressed during seed maturation and embryo germination. The open reading frame of B12D cDNAs encodes a protein of unknown function highly conserved in mono-and dicotyledonous species, while B22E encodes a metallothionein-like protein. Several slightly different B22E transcripts have earlier been identified. Our objective was to investigate the number of B12D genes, and B12D and B22E expression patterns in mature aleurone. Gnomic Southern hybridization and primer extension experiments suggest the presence of a B12D gene family in barley with at least 8 or 9 members. B12D transcripts can also be identified in the starchy endosperm, and a primer extension analysis indicates that some of these genes are expressed in the starchy endosperm only. A number of genes appear to be transcribed in all tissues investigated; starchy endosperm, pericarp, immature and mature embryos and aleurone, and mature aleurone incubated with GA(3). One B12D gene, HvB12Dg1, was isolated and shown by particle bombardment with a promoter-GUS construct to be transcriptionally active. The HvR12Dg1 promoter contains elements similar to those of the gibberellic acid response complex (GARC). B12D transcripts are found in the aleurone of imbibed embryoless grains, while B22E transcripts are barely detectable. However, both transcripts are up-regulated by the presence of the germinating embryo. For B22E this effect is not mimicked by applying GA(3) exogenously to imbibed embryoless grains, while the B12D transcript level increases 2- to 3-fold, at most. On the other hand, ABA can suppress B12D expression. Our investigations indicate that gibberellic acid may not be directly involved in the up-regulation of all transcripts induced in the aleurone during germination

    A peroxiredoxin antioxidant is encoded by a dormancy-related gene, Per1, expressed during late development in the aleurone and embryo of barley grains

    No full text
    Antioxidants can remove damaging reactive oxygen species produced as by-products of desiccation and respiration during late embryogenesis, imbibition of dormant seeds and germination. We have expressed a protein, PER1, encoded by the Balem (barley aleurone and embryo) transcript previously called B15C, and show it to reduce oxidative damage in vitro. PER1 shares high similarity to a novel group of thiol-requiring antioxidants, named peroxiredoxins, and represents a subgroup with only one conserved cysteine residue (l-Cys). PER1 is the first antioxidant belonging to the l-Cys subgroup shown to be functionally active, and the first peroxiredoxin of any kind to be functionally described in plants. The steady state level of the transcript, Per1, homologous to a dormancy-related transcript (pBS128) from bromegrass (Bromus secalinus), increases considerably in imbibed embryos from dormant barley (Hordeum vulgare L.) grains. Our investigations also indicate that Per1 transcript levels are dormancy-related in the aleurone layer of whole grains. In contrast to most seed-expressed antioxidants Per1 disappears in germinating embryos, and in the mature aleurone the transcript is down-regulated by the germinating embryo or by gibberellic acid (GA). Our data show that the barley seed peroxiredoxin is encoded by a single Per1 gene. Possible roles of the PER1 peroxiredoxin in barley grains during desiccation, dormancy and imbibition are discussed
    corecore