65 research outputs found

    High Phosphate-Induced JAK-STAT Signalling Sustains Vascular Smooth Muscle Cell Inflammation and Limits Calcification

    Get PDF
    Vascular calcification (VC) is an age-related complication characterised by calcium-phosphate deposition in the arterial wall driven by the osteogenic transformation of vascular smooth muscle cells (VSMCs). The JAK-STAT pathway is an emerging target in inflammation. Considering the relationship between VC and inflammation, we investigated the role of JAK-STAT signalling during VSMC calcification. Human aortic smooth muscle cells (HASMCs) were cultured in high-inorganic phosphate (Pi) medium for up to 7 days; calcium deposition was determined via Alizarin staining and colorimetric assay. Inflammatory factor secretion was evaluated via ELISA and JAK-STAT members' activation using Western blot or immunohistochemistry on HASMCs or calcified aortas of Vitamin D-treated C57BL6/J mice, respectively. The JAK-STAT pathway was blocked by JAK Inhibitor I and Von Kossa staining was used for calcium deposits in murine aortic rings. During Pi-induced calcification, HASMCs released IL-6, IL-8, and MCP-1 and activated JAK1-JAK3 proteins and STAT1. Phospho-STAT1 was detected in murine calcified aortas. Blocking of the JAK-STAT cascade reduced HASMC proliferation and pro-inflammatory factor expression and release while increasing calcium deposition and osteogenic transcription factor RUNX2 expression. Consistently, JAK-STAT pathway inhibition exacerbates mouse aortic ring calcification ex vivo. Intriguingly, our results suggest an alternative link between VSMC inflammation and VC

    Circulating levels of AGEs and soluble RAGE isoforms are associated with all-cause mortality and development of cardiovascular complications in type 2 diabetes: a retrospective cohort study

    Get PDF
    none10noopenSabbatinelli, Jacopo; Castiglione, Stefania; Macrì, Federica; Giuliani, Angelica; Ramini, Deborah; Vinci, Maria Cristina; Tortato, Elena; Bonfigli, Anna Rita; Olivieri, Fabiola; Raucci, AngelaSabbatinelli, Jacopo; Castiglione, Stefania; Macrì, Federica; Giuliani, Angelica; Ramini, Deborah; Vinci, Maria Cristina; Tortato, Elena; Bonfigli, Anna Rita; Olivieri, Fabiola; Raucci, Angel

    HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4

    Get PDF
    After tissue damage, inflammatory cells infiltrate the tissue and release proinflammatory cytokines. HMGB1 (high mobility group box 1), a nuclear protein released by necrotic and severely stressed cells, promotes cytokine release via its interaction with the TLR4 (Toll-like receptor 4) receptor and cell migration via an unknown mechanism. We show that HMGB1- induced recruitment of inflammatory cells depends on CXCL12. HMGB1 and CXCL12 form a heterocomplex, which we characterized by nuclear magnetic resonance and surface plasmon resonance, that acts exclusively through CXCR4 and not through other HMGB1 receptors. Fluorescence resonance energy transfer data show that the HMGB1–CXCL12 heterocomplex promotes different conformational rearrangements of CXCR4 from that of CXCL12 alone. Mononuclear cell recruitment in vivo into air pouches and injured muscles depends on the heterocomplex and is inhibited by AMD3100 and glycyrrhizin. Thus, inflammatory cell recruitment and activation both depend on HMGB1 via different mechanisms

    Hematopoietic progenitor cell liabilities and alarmins S100A8/A9-related inflammaging associate with frailty and predict poor cardiovascular outcomes in older adults

    Get PDF
    Frailty affects the physical, cognitive, and social domains exposing older adults to an increased risk of cardiovascular disease and death. The mechanisms linking frailty and cardiovascular outcomes are mostly unknown. Here, we studied the association of abundance (flow cytometry) and gene expression profile (RNAseq) of stem/progenitor cells (HSPCs) and molecular markers of inflammaging (ELISA) with the cardiorespiratory phenotype and prospective adverse events of individuals classified according to levels of frailty. Two cohorts of older adults were enrolled in the study. In a cohort of pre‐frail 35 individuals (average age: 75 years), a physical frailty score above the median identified subjects with initial alterations in cardiorespiratory function. RNA sequencing revealed S100A8/A9 upregulation in HSPCs from the bone marrow (>10‐fold) and peripheral blood (>200‐fold) of individuals with greater physical frailty. Moreover higher frailty was associated with increased alarmins S100A8/A9 and inflammatory cytokines in peripheral blood. We then studied a cohort of 104 more frail individuals (average age: 81 years) with multidomain health deficits. Reduced levels of circulating HSPCs and increased S100A8/A9 concentrations were independently associated with the frailty index. Remarkably, low HSPCs and high S100A8/A9 simultaneously predicted major adverse cardiovascular events at 1‐year follow‐up after adjustment for age and frailty index. In conclusion, inflammaging characterized by alarmin and pro‐inflammatory cytokines in pre‐frail individuals is mirrored by the pauperization of HSPCs in frail older people with comorbidities. S100A8/A9 is upregulated within HSPCs, identifying a phenotype that associates with poor cardiovascular outcomes

    Ischemic wound revascularization by the stromal vascular fraction relies on host-donor hybrid vessels

    Get PDF
    Nonhealing wounds place a significant burden on both quality of life of affected patients and health systems. Skin substitutes are applied to promote the closure of nonhealing wounds, although their efficacy is limited by inadequate vascularization. The stromal vascular fraction (SVF) from the adipose tissue is a promising therapy to overcome this limitation. Despite a few successful clinical trials, its incorporation in the clinical routine has been hampered by their inconsistent results. All these studies concluded by warranting pre-clinical work aimed at both characterizing the cell types composing the SVF and shedding light on their mechanism of action. Here, we established a model of nonhealing wound, in which we applied the SVF in combination with a clinical-grade skin substitute. We purified the SVF cells from transgenic animals to trace their fate after transplantation and observed that it gave rise to a mature vascular network composed of arteries, capillaries, veins, as well as lymphatics, structurally and functionally connected with the host circulation. Then we moved to a human-in-mouse model and confirmed that SVF-derived endothelial cells formed hybrid human-mouse vessels, that were stabilized by perivascular cells. Mechanistically, SVF-derived endothelial cells engrafted and expanded, directly contributing to the formation of new vessels, while a population of fibro-adipogenic progenitors stimulated the expansion of the host vasculature in a paracrine manner. These data have important clinical implications, as they provide a steppingstone toward the reproducible and effective adoption of the SVF as a standard care for nonhealing wounds

    microRNA-34a: a new player in arterial inflammaging: DOI: 10.14800/rd.757

    No full text
    Arterial inflammaging highly contributes to cardiovascular morbidity and mortality. As vascular cells age they become senescent and sustain a chronic low grade sterile inflammation by acquiring a senescence-associated secretory phenotype (SASP). The molecular mechanisms leading to the phenotypic changes affecting endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are also relevant for the pathogenesis of vascular diseases, such as atherosclerosis and hypertension. Therefore, unravelling the etiology of vascular inflammaging becomes of crucial importance. MicroRNAs (miRNAs) are small non-coding negative post-transcriptional regulator that are emerging as promising drug targets. MicroRNA-34a (miR-34a) had been implicated in tissues aging and endothelial and endothelial progenitor cells senescence. Our recent work showed that this miRNA is upregulated in aged mouse aortas as well as in senescent VSMCs. Conversely, its target SIRT1 is downregulated in the same specimens. We also found that miR-34a can inhibit VSMCs proliferation and induce VSMCs senescence, the latter by the direct regulation of SIRT1. Notably, for the first time, we demonstrated that miR-34a is also able to modulate the SASP by inducing the transcriptional expression of a subset of pro-inflammatory factors in a SIRT1-independent manner. These data support a model in which the age-dependent upregulation of miR-34a, by affecting senescence and inflammation of vascular cells, could play a causal role to arterial dysfunctions. Hence, further studies are necessary to unravel miR-34a-dependent mechanisms leading to arterial inflammaging in order to develop an effective strategy to age-related cardiovascular complications

    La posizione linguistica delle lingue caucasiche

    Get PDF
    corecore