546 research outputs found

    Superfluidity of a perfect quantum crystal

    Full text link
    In recent years, experimental data were published which point to the possibility of the existence of superfluidity in solid helium. To investigate this phenomenon theoretically we employ a hierarchy of equations for reduced density matrices which describes a quantum system that is in thermodynamic equilibrium below the Bose-Einstein condensation point, the hierarchy being obtained earlier by the author. It is shown that the hierarchy admits solutions relevant to a perfect crystal (immobile) in which there is a frictionless flow of atoms, which testifies to the possibility of superfluidity in ideal solids. The solutions are studied with the help of the bifurcation method and some their peculiarities are found out. Various physical aspects of the problem, among them experimental ones, are discussed as well.Comment: 24 pages with 2 figures, version accepted for publication in Eur.Phys.J.

    Close encounters of a rotating star with planets in parabolic orbits of varying inclination and the formation of Hot Jupiters

    Full text link
    (abbreviated) We extend the theory of close encounters of a planet on a parabolic orbit with a star to include the effects of tides induced on the central rotating star. Orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment and numerical one that are in satisfactory agreement. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5-6 stellar radii (corresponding to periods 45\sim 4-5 days after the circularisation has been completed) with tides in the star being much stronger for retrograde orbits compared to prograde orbits. We use the simple Skumanich law for the stellar rotation with its rotational period equal to one month at the age of 5Gyr. The strength of tidal interactions is characterised by circularisation time scale, tevt_{ev} defined as a time scale of evolution of the planet's semi-major axis due to tides considered as a function of orbital period PobsP_{obs} after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits is of order 1.5-2 for a planet of one Jupiter mass and PobsP_{obs}\sim four days. It grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same PorbP_{orb}. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet-planet scattering, favouring systems with retrograde orbits. The results may also be applied to the problem of tidal capture of stars in young stellar clusters.Comment: to be published in Celestial Mechanics and Dynamical Astronom

    Health economic implications of irbesartan plus conventional antihypertensive medications versus conventional blood pressure control alone in patients with type 2 diabetes, hypertension, and renal disease in Switzerland.

    Get PDF
    The aim of this health economic modelling study was to investigate the effect of irbesartan combined with conventional antihypertensive medications compared to conventional antihypertensive therapy alone on the progression of nephropathy in patients with hypertension, type 2 diabetes and microalbuminuria in a Swiss setting. In simulated patients with hypertension and type 2 diabetes, treatment of microalbuminuria with irbesartan 300 mg daily plus conventional antihypertensive medications was compared to a control regimen (conventional medications excluding angiotensin converting enzyme inhibitors, other angiotensin-2-receptor antagonist and dihydropyridine calcium channel blockers). Progression from microalbuminuria to nephropathy, doubling of serum creatinine, ESRD, and all-cause mortality was simulated over a 25-year time horizon using a published Markov model adapted to a Swiss setting. Transition probabilities were based on the Irbesartan in Reduction of Microalbuminuria-2 Study, Irbesartan in Diabetic Nephropathy Trial and other sources. Costs and clinical outcomes were discounted at 5% annually according to Swiss guidelines, and a third party payer perspective was taken. Treatment with irbesartan was projected to improve mean life expectancy by 0.57 years compared to conventional antihypertension treatment (undiscounted 1.22 years). Irbesartan treatment was associated with cost savings of CHF 21,488 per patient over the 25-year time horizon. Sensitivity analysis showed that irbesartan therapy remained dominant to conventional antihypertension treatment over a range of plausible assumptions. Addition of irbesartan to conventional antihypertension therapy was projected to improve life expectancy and reduce costs in hypertensive patients with type 2 diabetes and microalbuminuria in a Swiss setting

    Persistence in higher dimensions : a finite size scaling study

    Full text link
    We show that the persistence probability P(t,L)P(t,L), in a coarsening system of linear size LL at a time tt, has the finite size scaling form P(t,L)Lzθf(tLz)P(t,L)\sim L^{-z\theta}f(\frac{t}{L^{z}}) where θ\theta is the persistence exponent and zz is the coarsening exponent. The scaling function f(x)xθf(x)\sim x^{-\theta} for x1x \ll 1 and is constant for large xx. The scaling form implies a fractal distribution of persistent sites with power-law spatial correlations. We study the scaling numerically for Glauber-Ising model at dimension d=1d = 1 to 4 and extend the study to the diffusion problem. Our finite size scaling ansatz is satisfied in all these cases providing a good estimate of the exponent θ\theta.Comment: 4 pages in RevTeX with 6 figures. To appear in Phys. Rev.

    Environment-induced dynamical chaos

    Get PDF
    We examine the interplay of nonlinearity of a dynamical system and thermal fluctuation of its environment in the ``physical limit'' of small damping and slow diffusion in a semiclassical context and show that the trajectories of c-number variables exhibit dynamical chaos due to the thermal fluctuations of the bath.Comment: Revtex, 4 pages and 4 figure

    Generalized quantum Fokker-Planck, diffusion and Smoluchowski equations with true probability distribution functions

    Get PDF
    Traditionally, the quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of quasi-probability distribution functions, e.g., Wigner functions. These often become singular or negative in the full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion using {\it true probability distribution functions} is presented. Based on an initial coherent state representation of the bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their co-ordinates and momenta we derive a generalized quantum Langevin equation in cc-numbers and show that the latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The corresponding Fokker-Planck, diffusion and the Smoluchowski equations are the {\it exact} quantum analogues of their classical counterparts. The present work is {\it independent} of path integral techniques. The theory as developed here is a natural extension of its classical version and is valid for arbitrary temperature and friction (Smoluchowski equation being considered in the overdamped limit).Comment: RevTex, 16 pages, 7 figures, To appear in Physical Review E (minor revision

    Fluctuation-dissipation relationship in chaotic dynamics

    Full text link
    We consider a general N-degree-of-freedom dissipative system which admits of chaotic behaviour. Based on a Fokker-Planck description associated with the dynamics we establish that the drift and the diffusion coefficients can be related through a set of stochastic parameters which characterize the steady state of the dynamical system in a way similar to fluctuation-dissipation relation in non-equilibrium statistical mechanics. The proposed relationship is verified by numerical experiments on a driven double well system.Comment: Revtex, 23 pages, 2 figure

    Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra

    Full text link
    A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure

    On The Mobile Behavior of Solid 4^4He at High Temperatures

    Full text link
    We report studies of solid helium contained inside a torsional oscillator, at temperatures between 1.07K and 1.87K. We grew single crystals inside the oscillator using commercially pure 4^4He and 3^3He-4^4He mixtures containing 100 ppm 3^3He. Crystals were grown at constant temperature and pressure on the melting curve. At the end of the growth, the crystals were disordered, following which they partially decoupled from the oscillator. The fraction of the decoupled He mass was temperature and velocity dependent. Around 1K, the decoupled mass fraction for crystals grown from the mixture reached a limiting value of around 35%. In the case of crystals grown using commercially pure 4^4He at temperatures below 1.3K, this fraction was much smaller. This difference could possibly be associated with the roughening transition at the solid-liquid interface.Comment: 15 pages, 6 figure
    corecore