235 research outputs found

    Shock compression and spallation of single crystal tantalum

    Get PDF
    We present molecular dynamics simulations of shock-induced plasticity and spall damage in single crystal Ta described by a recently developed embedded-atom-method (EAM) potential and a volumedependent qEAM potential. We use impact or Hugoniotstat simulations to investigate the Hugoniots, deformation and spallation. Both EAM and qEAM are accurate in predicting, e.g., the Hugoniots and γ - surfaces. Deformation and spall damage are anisotropic for Ta single crystals. Our preliminary results show that twinning is dominant for [100] and [110] shock loading, and dislocation, for [111]. Spallation initiates with void nucleation at defective sites from remnant compressional deformation or tensile plasticity. Spall strength decreases with increasing shock strength, while its rate dependence remains to be explored

    Investigation of correlations between clinical signs and pathological findings in cats and dogs with inflammatory bowel disease

    Get PDF
    This paper compares the correlation between the clinical signs and the histopathological observations of the entire intestine in cats and dogs with inflammatory bowel disease (IBD). To perform this study, hospital records of 53 dogs and 20 cats of different sex, ages, and breed diagnosed with IBD following the histopathological criteria of the World Small Animal Veterinary Association (WSAVA) were evaluated. The results obtained in this study did show correlations between some clinical signs and the histopathological assessment of dogs and cats with IBD. Therefore, a slight association between diarrhea and lacteal dilation in the small bowel, and diarrhea and desquamation in the large bowel of dogs with IBD was seen, but no other associations were found between the rest of the lesions and symptoms. In contrast, cats only showed a correlation between anorexia with villous stunting and villous epithelial injury, without correspondence among other clinical signs and lesions. The results of this study propose that the evaluation of IBD can be complicated, especially with the use of retrospective records of archived intestinal biopsies and subjective clinical and histopathologic decisions

    The Guaymas Basin Subseafloor Sedimentary Archaeome Reflects Complex Environmental Histories

    Get PDF
    We explore archaeal distributions in sedimentary subseafloor habitats of Guaymas Basin and the adjacent Sonora Margin, located in the Gulf of California, México. Sampling locations include (1) control sediments without hydrothermal or seep influence, (2) Sonora Margin sediments underlying oxygen minimum zone water, (3) compacted, highly reduced sediments from a pressure ridge with numerous seeps at the base of the Sonora Margin, and (4) sediments impacted by hydrothermal circulation at the off-axis Ringvent site. Generally, archaeal communities largely comprise Bathyarchaeal lineages, members of the Hadesarchaea, MBG-D, TMEG, and ANME-1 groups. Variations in archaeal community composition reflect locally specific environmental challenges. Background sediments are divided into surface and subsurface niches. Overall, the environmental setting and history of a particular site, not isolated biogeochemical properties out of context, control the subseafloor archaeal communities in Guaymas Basin and Sonora Margin sediments

    The Effect of Lattice Vibrations on Substitutional Alloy Thermodynamics

    Get PDF
    A longstanding limitation of first-principles calculations of substitutional alloy phase diagrams is the difficulty to account for lattice vibrations. A survey of the theoretical and experimental literature seeking to quantify the impact of lattice vibrations on phase stability indicates that this effect can be substantial. Typical vibrational entropy differences between phases are of the order of 0.1 to 0.2 k_B/atom, which is comparable to the typical values of configurational entropy differences in binary alloys (at most 0.693 k_B/atom). This paper describes the basic formalism underlying ab initio phase diagram calculations, along with the generalization required to account for lattice vibrations. We overview the various techniques allowing the theoretical calculation and the experimental determination of phonon dispersion curves and related thermodynamic quantities, such as vibrational entropy or free energy. A clear picture of the origin of vibrational entropy differences between phases in an alloy system is presented that goes beyond the traditional bond counting and volume change arguments. Vibrational entropy change can be attributed to the changes in chemical bond stiffness associated with the changes in bond length that take place during a phase transformation. This so-called ``bond stiffness vs. bond length'' interpretation both summarizes the key phenomenon driving vibrational entropy changes and provides a practical tool to model them.Comment: Submitted to Reviews of Modern Physics 44 pages, 6 figure

    Variable stars in Local Group galaxies - V. The fast and early evolution of the low-mass Eridanus II dSph galaxy

    Get PDF
    International audienceWe present a detailed study of the variable star population of Eridanus II (Eri II), an ultra-faint dwarf galaxy that lies close to the Milky Way virial radius. We analyse multi-epoch g, r, i ground-based data from Goodman and the Dark Energy Camera, plus F475W, F606W, F814W space data from the Advanced Camera for Surveys. We report the detection of 67 RR Lyrae (RRL) stars and 2 Anomalous Cepheids, most of them new discoveries. With the RRL stars, we measure the distance modulus of Eri II, μ0 = 22.84 ± 0.05 mag (D⊙ = 370 ± 9 kpc), and derive a metallicity spread of 0.3 dex (0.2 dex intrinsic). The colour distribution of the horizontal branch (HB) and the period distribution of the RRL stars can be nicely reproduced by a combination of two stellar models of [Fe/H] = (-2.62, -2.14). The overall low metallicity is consistent with the red giant branch bump location, 0.65 mag brighter than the HB. These results are in agreement with previous spectroscopic studies. The more metal-rich RRL and the RRab stars have greater central concentration than the more metal-poor RRL and the RRc stars that are mainly located outside ~1 rh. This is similar to what is found in larger dwarf galaxies such as Sculptor, and in agreement with an outside-in galaxy formation scenario. This is remarkable in such a faint dwarf galaxy with an apparently single and extremely short (<1 Gyr) star formation burst. Finally, we have derived new and independent structural parameters for Eri II and its star cluster using our new data that are in very good agreement with previous estimates

    Nonisentropic Release of a Shocked Solid

    Get PDF
    We present molecular dynamics (MD) simulations of shock and release in micron-scale tantalum crystals that exhibit post-breakout temperatures far exceeding those expected under the standard assumption of isentropic release. We show via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction, and are found to be close to those behind the shock

    Patterns and mechanisms of early Pliocene warmth

    Get PDF
    About five to four million years ago, in the early Pliocene epoch, Earth had a warm, temperate climate. The gradual cooling that followed led to the establishment of modern temperature patterns, possibly in response to a decrease in atmospheric CO2 concentration, of the order of 100 parts per million, towards preindustrial values. Here we synthesize the available geochemical proxy records of sea surface temperature and show that, compared with that of today, the early Pliocene climate had substantially lower meridional and zonal temperature gradients but similar maximum ocean temperatures. Using an Earth system model, we show that none of the mechanisms currently proposed to explain Pliocene warmth can simultaneously reproduce all three crucial features. We suggest that a combination of several dynamical feedbacks underestimated in the models at present, such as those related to ocean mixing and cloud albedo, may have been responsible for these climate conditions
    corecore