495 research outputs found

    Association between cognitive performance and cortical glucose metabolism in patients with mild Alzheimer's disease

    Get PDF
    Background: Neuronal and synaptic function in Alzheimer's disease (AD) is measured in vivo by glucose metabolism using positron emission tomography (PET). Objective: We hypothesized that neuronal activation as measured by PET is a more sensitive index of neuronal dysfunction than activity during rest. We investigated if the correlations between dementia severity as measured with the Mini Mental State Examination (MMSE) and glucose metabolism are an artifact of brain atrophy. Method: Glucose metabolism was measured using {[}F-18]fluorodeoxyglucose PET during rest and activation due to audiovisual stimulation in 13 mild to moderate AD patients (MMSE score >= 17). PET data were corrected for brain atrophy. Results: In the rest condition, glucose metabolism was correlated with the MMSE score primarily within the posterior cingulate and parietal lobes. For the activation condition, additional correlations were within the primary and association audiovisual areas. Most local maxima remained significant after correcting for brain atrophy. Conclusion: PET activity measured during audiovisual stimulation was more sensitive to functional alterations in glucose metabolism in AD patients compared to the resting PET. The association between glucose metabolism and MMSE score was not dependent on brain atrophy. Copyright (C) 2005 S. Karger AG, Basel

    Endogenous Signaling by Omega-3 Docosahexaenoic Acid-derived Mediators Sustains Homeostatic Synaptic and Circuitry Integrity

    Get PDF
    The harmony and function of the complex brain circuits and synapses are sustained mainly by excitatory and inhibitory neurotransmission, neurotrophins, gene regulation, and factors, many of which are incompletely understood. A common feature of brain circuit components, such as dendrites, synaptic membranes, and other membranes of the nervous system, is that they are richly endowed in docosahexaenoic acid (DHA), the main member of the omega-3 essential fatty acid family. DHA is avidly retained and concentrated in the nervous system and known to play a role in neuroprotection, memory, and vision. Only recently has it become apparent why the surprisingly rapid increases in free (unesterified) DHA pool size take place at the onset of seizures or brain injury. This phenomenon began to be clarified by the discovery of neuroprotectin D1 (NPD1), the first-uncovered bioactive docosanoid formed from free DHA through 15-lipoxygenase-1 (15-LOX-1). NPD1 synthesis includes, as agonists, oxidative stress and neurotrophins. The evolving concept is that DHA-derived docosanoids set in motion endogenous signaling to sustain homeostatic synaptic and circuit integrity. NPD1 is anti-inflammatory, displays inflammatory resolving activities, and induces cell survival, which is in contrast to the pro-inflammatory actions of the many of omega-6 fatty acid family members. We highlight here studies relevant to the ability of DHA to sustain neuronal function and protect synapses and circuits in the context of DHA signalolipidomics. DHA signalolipidomics comprises the integration of the cellular/tissue mechanism of DHA uptake, its distribution among cellular compartments, the organization and function of membrane domains containing DHA phospholipids, and the precise cellular and molecular events revealed by the uncovering of signaling pathways regulated by docosanoids endowed with prohomeostatic and cell survival bioactivity. Therefore, this approach offers emerging targets for prevention, pharmaceutical intervention, and clinical translation involving DHA-mediated signaling

    Deficient Liver Biosynthesis of Docosahexaenoic Acid Correlates with Cognitive Impairment in Alzheimer's Disease

    Get PDF
    Reduced brain levels of docosahexaenoic acid (C22:6n-3), a neurotrophic and neuroprotective fatty acid, may contribute to cognitive decline in Alzheimer's disease. Here, we investigated whether the liver enzyme system that provides docosahexaenoic acid to the brain is dysfunctional in this disease. Docosahexaenoic acid levels were reduced in temporal cortex, mid-frontal cortex and cerebellum of subjects with Alzheimer's disease, compared to control subjects (P = 0.007). Mini Mental State Examination (MMSE) scores positively correlated with docosahexaenoic/α-linolenic ratios in temporal cortex (P = 0.005) and mid-frontal cortex (P = 0.018), but not cerebellum. Similarly, liver docosahexaenoic acid content was lower in Alzheimer's disease patients than control subjects (P = 0.011). Liver docosahexaenoic/α-linolenic ratios correlated positively with MMSE scores (r = 0.78; P<0.0001), and negatively with global deterioration scale grades (P = 0.013). Docosahexaenoic acid precursors, including tetracosahexaenoic acid (C24:6n-3), were elevated in liver of Alzheimer's disease patients (P = 0.041), whereas expression of peroxisomal d-bifunctional protein, which catalyzes the conversion of tetracosahexaenoic acid into docosahexaenoic acid, was reduced (P = 0.048). Other genes involved in docosahexaenoic acid metabolism were not affected. The results indicate that a deficit in d-bifunctional protein activity impairs docosahexaenoic acid biosynthesis in liver of Alzheimer's disease patients, lessening the flux of this neuroprotective fatty acid to the brain

    Plasma response to fish oil in the elderly

    Get PDF
    Little information is available concerning whether incorporation of dietary omega-3 fatty acids into plasma lipids changes during healthy aging. Elderly (74 ± 4 years old) and young (24 ± 2 years old) adults were given a fish oil supplement for 3 weeks that provided 680 mg/day of docosahexaenoic acid and 320 mg/day of eicosapentaenoic acid, followed by a 2 week wash-out period. Compliance was monitored by spiking the capsules with carbon-13 glucose, the excretion of which was measured in breath CO2. In response to the supplement, plasma docosahexaenoic acid rose 42% more in the elderly but eicosapentaenoic responded similarly in both groups. Despite raising docosahexaenoic acid intake by five to tenfold, the supplement did not raise plasma free docosahexaenoic acid (% or mg/dL) in either group. We conclude that healthy aging is accompanied by subtle but significant changes in DHA incorporation into plasma lipids

    Barrier dysfunction or drainage reduction: differentiating causes of CSF protein increase

    Full text link
    BACKGROUND Cerebrospinal fluid (CSF) protein analysis is an important element in the diagnostic chain for various central nervous system (CNS) pathologies. Among multiple existing approaches to interpreting measured protein levels, the Reiber diagram is particularly robust with respect to physiologic inter-individual variability, as it uses multiple subject-specific anchoring values. Beyond reliable identification of abnormal protein levels, the Reiber diagram has the potential to elucidate their pathophysiologic origin. In particular, both reduction of CSF drainage from the cranio-spinal space as well as blood-CNS barrier dysfunction have been suggested ρas possible causes of increased concentration of blood-derived proteins. However, there is disagreement on which of the two is the true cause. METHODS We designed two computational models to investigate the mechanisms governing protein distribution in the spinal CSF. With a one-dimensional model, we evaluated the distribution of albumin and immunoglobulin G (IgG), accounting for protein transport rates across blood-CNS barriers, CSF dynamics (including both dispersion induced by CSF pulsations and advection by mean CSF flow) and CSF drainage. Dispersion coefficients were determined a priori by computing the axisymmetric three-dimensional CSF dynamics and solute transport in a representative segment of the spinal canal. RESULTS Our models reproduce the empirically determined hyperbolic relation between albumin and IgG quotients. They indicate that variation in CSF drainage would yield a linear rather than the expected hyperbolic profile. In contrast, modelled barrier dysfunction reproduces the experimentally observed relation. CONCLUSIONS High levels of albumin identified in the Reiber diagram are more likely to originate from a barrier dysfunction than from a reduction in CSF drainage. Our in silico experiments further support the hypothesis of decreasing spinal CSF drainage in rostro-caudal direction and emphasize the physiological importance of pulsation-driven dispersion for the transport of large molecules in the CSF

    Fats and Factors: Lipid Profiles Associate with Personality Factors and Suicidal History in Bipolar Subjects

    Get PDF
    Polyunsaturated fatty acids (PUFA) have shown efficacy in the treatment of bipolar disorder, however their specific role in treating the illness is unclear. Serum PUFA and dietary intakes of PUFA associate with suicidal behavior in epidemiological studies. The objective of this study was to assess serum n-3 and n-6 PUFA levels in bipolar subjects and determine possible associations with suicidal risk, including suicidal history and relevant personality factors that have been associated with suicidality. We studied 27 bipolar subjects using the NEO-PI to assess the big five personality factors, structured interviews to verify diagnosis and assess suicidal history, and lipomics to quantify n-3 and n-6 PUFA in serum. We found positive associations between personality factors and ratios of n-3 PUFA, suggesting that conversion of short chain to long chain n-3s and the activity of enzymes in this pathway may associate with measures of personality. Thus, ratios of docosahexaenoic acid (DHA) to alpha linolenic acid (ALA) and the activity of fatty acid desaturase 2 (FADS2) involved in the conversion of ALA to DHA were positively associated with openness factor scores. Ratios of eicosapentaenoic acid (EPA) to ALA and ratios of EPA to DHA were positively associated with agreeableness factor scores. Finally, serum concentrations of the n-6, arachidonic acid (AA), were significantly lower in subjects with a history of suicide attempt compared to non-attempters. The data suggest that specific lipid profiles, which are controlled by an interaction between diet and genetics, correlate with suicidal history and personality factors related to suicidal risk. This study provides preliminary data for future studies to determine whether manipulation of PUFA profiles (through diet or supplementation) can affect personality measures and disease outcome in bipolar subjects and supports the need for further investigations into individualized specific modulations of lipid profiles to add adjunctive value to treatment paradigms

    Omega-3 Fatty Acids Modify Human Cortical Visual Processing—A Double-Blind, Crossover Study

    Get PDF
    While cardiovascular and mood benefits of dietary omega-3 fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are manifest, direct neurophysiological evidence of their effects on cortical activity is still limited. Hence we chose to examine the effects of two proprietary fish oil products with different EPA∶DHA ratios (EPA-rich, high EPA∶DHA; DHA-rich) on mental processing speed and visual evoked brain activity. We proposed that nonlinear multifocal visual evoked potentials (mfVEP) would be sensitive to any alteration of the neural function induced by omega-3 fatty acid supplementation, because the higher order kernel responses directly measure the degree of recovery of the neural system as a function of time following stimulation. Twenty-two healthy participants aged 18–34, with no known neurological or psychiatric disorder and not currently taking any nutritional supplementation, were recruited. A double-blind, crossover design was utilized, including a 30-day washout period, between two 30-day supplementation periods of the EPA-rich and DHA-rich diets (with order of diet randomized). Psychophysical choice reaction times and multi-focal nonlinear visual evoked potential (VEP) testing were performed at baseline (No Diet), and after each supplementation period. Following the EPA-rich supplementation, for stimulation at high luminance contrast, a significant reduction in the amplitude of the first slice of the second order VEP kernel response, previously related to activation in the magnocellular pathway, was observed. The correlations between the amplitude changes of short latency second and first order components were significantly different for the two supplementations. Significantly faster choice reaction times were observed psychophysically (compared with baseline performance) under the EPA-rich (but not DHA-rich) supplementation, while simple reaction times were not affected. The reduced nonlinearities observed under the EPA-rich diet suggest a mechanism involving more efficient neural recovery of magnocellular-like visual responses following cortical activation

    Replacement of Retinyl Esters by Polyunsaturated Triacylglycerol Species in Lipid Droplets of Hepatic Stellate Cells during Activation

    Get PDF
    Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs) and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss. We have investigated the LD degradation processes in rat hepatic stellate cells in vitro with a combined approach of confocal Raman microspectroscopy and mass spectrometric analysis of lipids (lipidomics). Upon activation of the hepatic stellate cells, LDs reduce in size, but increase in number during the first 7 days, but the total volume of neutral lipids did not decrease. The LDs also migrate to cellular extensions in the first 7 days, before they disappear. In individual hepatic stellate cells. all LDs have a similar Raman spectrum, suggesting a similar lipid profile. However, Raman studies also showed that the retinyl esters are degraded more rapidly than the triacylglycerols upon activation. Lipidomic analyses confirmed that after 7 days in culture hepatic stellate cells have lost most of their retinyl esters, but not their triacylglycerols and cholesterol esters. Furthermore, we specifically observed a large increase in triacylglycerol-species containing polyunsaturated fatty acids, partly caused by an enhanced incorporation of exogenous arachidonic acid. These results reveal that lipid droplet degradation in activated hepatic stellate cells is a highly dynamic and regulated process. The rapid replacement of retinyl esters by polyunsaturated fatty acids in LDs suggests a role for both lipids or their derivatives like eicosanoids during hepatic stellate cell activation
    corecore