7,660 research outputs found

    Squeezing generation and revivals in a cavity-ion system in contact with a reservoir

    Full text link
    We consider a system consisting of a single two-level ion in a harmonic trap, which is localized inside a non-ideal optical cavity at zero temperature and subjected to the action of two external lasers. We are able to obtain an analytical solution for the total density operator of the system and show that squeezing in the motion of the ion and in the cavity field is generated. We also show that complete revivals of the states of the motion of the ion and of the cavity field occur periodically.Comment: 9 pages, 3 figure

    Efeito da deficiência hídrica e do fotoperíodo no rendimento de grãos da soja semeada na região de Dourados, MS.

    Get PDF
    bitstream/item/24702/1/COT200489.pdfDocumento on-line

    X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue

    Full text link
    AGN are known to have complex X-ray spectra that depend on both the properties of the accreting SMBH (e.g. mass, accretion rate) and the distribution of obscuring material in its vicinity ("torus"). Often however, simple and even unphysical models are adopted to represent the X-ray spectra of AGN. In the case of blank field surveys in particular, this should have an impact on e.g. the determination of the AGN luminosity function, the inferred accretion history of the Universe and also on our understanding of the relation between AGN and their host galaxies. We develop a Bayesian framework for model comparison and parameter estimation of X-ray spectra. We take into account uncertainties associated with X-ray data and photometric redshifts. We also demonstrate how Bayesian model comparison can be used to select among ten different physically motivated X-ray spectral models the one that provides a better representation of the observations. Despite the use of low-count spectra, our methodology is able to draw strong inferences on the geometry of the torus. For a sample of 350 AGN in the 4 Ms Chandra Deep Field South field, our analysis identifies four components needed to represent the diversity of the observed X-ray spectra: (abridged). Simpler models are ruled out with decisive evidence in favour of a geometrically extended structure with significant Compton scattering. Regarding the geometry of the obscurer, there is strong evidence against both a completely closed or entirely open toroidal geometry, in favour of an intermediate case. The additional Compton reflection required by data over that predicted by toroidal geometry models, may be a sign of a density gradient in the torus or reflection off the accretion disk. Finally, we release a catalogue with estimated parameters such as the accretion luminosity in the 2-10 keV band and the column density, NHN_{H}, of the obscurer.Comment: 28 pages, 18 figures, catalogue available from https://www.mpe.mpg.de/~jbuchner/agn_torus/analysis/cdfs4Ms_cat/, software available from https://github.com/JohannesBuchner/BX

    Pilhas de combustível e hidrogénio: Kit para fins didácticos

    Get PDF
    O cenário energético actual apresenta múltiplas problemáticas que condicionam o nosso futuro próximo. O sistema actual, baseado em combustíveis fósseis, é confrontado com grandes desafios que incluem a identificação de soluções adequadas, em tempo real, à crescente procura de energia e a necessidade de implementação de mais drásticas medidas para a mitigação dos efeitos das alterações climáticas, num quadro em que a segurança no abastecimento associada a instabilidade geopolítica das regiões produtoras impõe uma séria reflexão sobre a dependência e eficiência energéticas a vários níveis. Os investimentos necessários a um novo paradigma passam pela Investigação e Desenvolvimento e a Educação e aprendizagem orientadas, instrumentais na remoção de barreiras técnicas e de aceitação. Neste trabalho, apresenta-se um kit portátil para a divulgação do hidrogénio renovável como combustível em associação com pilhas de combustível, dirigida à população Escolar e Universitária, num pacote que inclui Aula introdutória aos sistemas de energias alternativos com documentação de suporte, demonstração hands-on, que será acompanhado por um Manual de Instruções e problemas a resolver pelos alunos

    PEM fuel cells: materials ageing mechanisms and performance impact

    Get PDF
    Polymer exchange membrane (PEM) fuel cells are considered promising power sources, with a vast application domain that includes consumer electronics, automotive and residential applications. As the technology matures, durability, reliability and cost are amongst the most critical issues, so creating the need for a more comprehensive knowledge of material’s ageing mechanism. In this work, the Membrane-Electrode Assembly, MEA, is considered a key component subject to material’s ageing with considerable impact on fuel cell performance. As it contains the polymer electrolyte membrane, the active catalysts and the gas diffusion layers (GDL), the mechanisms of degradation are complex. Furthermore, performance is also link to components such as gas distributor plates, since the used design and flow channels dimensions (channel width, channel depth, rib width) allow minimization of the diffusion pathway for gases. Effective oxidant supply and water management is greatly affected by cell geometry and materials. In-situ and ex-situ evaluation of MEA degradation were conducted after fuel cell ageing in extreme testing conditions. Humidified and dry gas feeds were also examined and the effect on cell performance and membrane conductivity examined. Variations of membrane conductivity with temperature and water content were considered critical: drying during operation as a result of dragging of water by protons or over saturated conditions cause condensation at the electrodes causing flooding with the consequent voltage degradation. Electrochemical Impedance Spectroscopy was found instrumental in the identification of flooding conditions using an equivalent circuit to model the interfaces at critical current densities, according to the location of identified irreversibility’s in the voltage-current domain of the fuel cell. Electrocatalyst surface area loss due to growth of catalyst particle size and particle agglomeration with the number of load cycles is suggested when using cyclic voltammetry of electrodes, this is thought to be due to a mechanism involving catalyst dissolution/precipitation. Cross sections of the membrane catalyst layers and GDLμs were examined under a FEG-SEM indicating that cathode thickness is considerably reduced as a result of ageing. Catalyst particles were found to migrate outwards and located on carbon backings. Fluoride release was considered as an early predictor of membrane degradation, quantified using an ion selective at gases outlet. MEA degradation mechanisms are discussed together with contributions that might aid design and operating strategies in PEM fuel Cells

    PEM Fuel Cells: materials ageing and degradation

    Get PDF
    As fuel cell technology matures and time scale to commercialization decreases, the need for a more comprehensive knowledge of materials ageing mechanisms is essential to attain specified lifetime requirements for applications. In this work, the membrane-electrode assembly (MEA) degradation of an eight cell PEM low power stack was evaluated, during and after fuel cell ageing in extreme testing conditions. The stack degradation analysis comprised observation of catalytic layer, morphology and composition. Cross sections examination of the MEAs revealed thickness variation of catalytic layer and membrane. Other modes of degradation such as cracking
    corecore