2,609 research outputs found

    Spin 3/2 Particle as a Dark Matter Candidate: an Effective Field Theory Approach

    Full text link
    There is no indication so far on the spin of dark matter particles. We consider the possibility in this work that a spin-3/2 particle acts as dark matter. Employing the approach of effective field theory, we list all possible 4-fermion effective interactions between a pair of such fields and a pair of ordinary fermion fields. We investigate the implications of the proposal on the relic density, the antiproton to proton flux ratio in cosmic rays, and the elastic scattering off nuclei in direct detection. While the relic density and flux ratio are sensitive to all interactions albeit at different levels, the direct detection is only sensitive to a few of them. Using the observed data and experimental bounds, we set constraints on the relation of couplings and dark particle mass. In particular, we find that some mass ranges can already be excluded by jointly applying the observed relic density on the one side and the measured antiproton to proton flux ratio or the upper bounds from direct detection on the other.Comment: v1: 18 pages including 6 figs; v2: 19 pages including 6 figs, added more refs, fixed wrong labels (to experiments) in figs. 3 and 4, corrected typos; v3: 19 pages, slight clarifications in response to referee's comments, added more refs, identical to the proofread version for jhep except for the format of ref

    LHC Phenomenology of Type II Seesaw: Nondegenerate Case

    Full text link
    In this paper, we thoroughly investigate the LHC phenomenology of the type II seesaw mechanism for neutrino masses in the nondegenerate case where the triplet scalars of various charge (H±±,H±,H0,A0H^{\pm\pm}, H^\pm, H^0, A^0) have different masses. Compared with the degenerate case, the cascade decays of scalars lead to many new, interesting signal channels. In the positive scenario where MH±±<MH±<MH0/A0M_{H^{\pm\pm}}<M_{H^\pm}<M_{H^0/A^0}, the four-lepton signal is still the most promising discovery channel for the doubly-charged scalars H±±H^{\pm\pm}. The five-lepton signal is crucial to probe the mass spectrum of the scalars, for which, for example, a 5σ5\sigma reach at 14 TeV LHC for MH±=430GeVM_{H^{\pm}}=430 GeV with MH±±=400GeVM_{H^{\pm\pm}}=400 GeV requires an integrated luminosity of 76/fb. And the six-lepton signal can be used to probe the neutral scalars H0/A0H^0/A^0, which are usually hard to detect in the degenerate case. In the negative scenario where MH±±>MH±>MH0/A0M_{H^{\pm\pm}}>M_{H^\pm}>M_{H^0/A^0}, the detection of H±±H^{\pm\pm} is more challenging, when the cascade decay H±±H±W±H^{\pm\pm}\to H^{\pm}W^{\pm*} is dominant. The most important channel is the associated H±H0/A0H^{\pm}H^0/A^0 production in the final state ±ETbbˉbbˉ\ell^\pm\cancel{E}_Tb\bar{b}b\bar{b}, which requires a luminosity of 109/fb for a 5σ5\sigma discovery, while the final state ±ETbbˉτ+τ\ell^\pm\cancel{E}_Tb\bar{b}\tau^+\tau^- is less promising. Moreover, the associated H0A0H^0A^0 production can give same signals as the standard model Higgs pair production. With a much larger cross section, the H0A0H^0A^0 production in the final state bbˉτ+τb\bar{b}\tau^+\tau^- could reach 3σ3\sigma significance at 14 TeV LHC with a luminosity of 300/fb. In summary, with an integrated luminosity of order 500/fb, the triplet scalars can be fully reconstructed at 14 TeV LHC in the negative scenario.Comment: 41 pages, 20 figures, 7 tables. Version 2 accepted by PRD. 41 pages, 18 figures. Main changes are, (1) rewording in secs III and IV, removing 2 figs and quoting ref [34]; (2) a paragraph added before eq (10) to clarify constraints from electroweak precision data; (3) a paper added to ref [11]. No changes in result

    LHC Phenomenology of the Type II Seesaw Mechanism: Observability of Neutral Scalars in the Nondegenerate Case

    Full text link
    This is a sequel to our previous work on LHC phenomenology of the type II seesaw model in the nondegenerate case. In this work, we further study the pair and associated production of the neutral scalars H^0/A^0. We restrict ourselves to the so-called negative scenario characterized by the mass order M_{H^{\pm\pm}}>M_{H^\pm}>M_{H^0/A^0}, in which the H^0/A^0 production receives significant enhancement from cascade decays of the charged scalars H^{\pm\pm},~H^\pm. We consider three important signal channels---b\bar{b}\gamma\gamma, b\bar{b}\tau^+\tau^-, bbˉ+ETb\bar{b}\ell^+\ell^-\cancel{E}_T---and perform detailed simulations. We find that at the 14 TeV LHC with an integrated luminosity of 3000/fb, a 5\sigma mass reach of 151, 150, and 180 GeV, respectively, is possible in the three channels from the pure Drell-Yan H^0A^0 production, while the cascade-decay-enhanced H^0/A^0 production can push the mass limit further to 164, 177, and 200 GeV. The neutral scalars in the negative scenario are thus accessible at LHC run II.Comment: v1: 32 pages, 17 figures, 3 tables. v2: added 2 refs (2nd in [61] and [66]), revised Acknowledgments, and corrected grammatical errors according to proofs; no other change

    Joint modeling of bivariate time to event data with semi-competing risk

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Survival analysis often encounters the situations of correlated multiple events including the same type of event observed from siblings or multiple events experienced by the same individual. In this dissertation, we focus on the joint modeling of bivariate time to event data with the estimation of the association parameters and also in the situation of a semi-competing risk. This dissertation contains three related topics on bivariate time to event mod els. The first topic is on estimating the cross ratio which is an association parameter between bivariate survival functions. One advantage of using cross-ratio as a depen dence measure is that it has an attractive hazard ratio interpretation by comparing two groups of interest. We compare the parametric, a two-stage semiparametric and a nonparametric approaches in simulation studies to evaluate the estimation perfor mance among the three estimation approaches. The second part is on semiparametric models of univariate time to event with a semi-competing risk. The third part is on semiparametric models of bivariate time to event with semi-competing risks. A frailty-based model framework was used to accommodate potential correlations among the multiple event times. We propose two estimation approaches. The first approach is a two stage semiparametric method where cumulative baseline hazards were estimated by nonparametric methods first and used in the likelihood function. The second approach is a penalized partial likelihood approach. Simulation studies were conducted to compare the estimation accuracy between the proposed approaches. Data from an elderly cohort were used to examine factors associated with times to multiple diseases and considering death as a semi-competing risk

    Interpretation of 750 GeV Diphoton Excess at LHC in Singlet Extension of Color-octet Neutrino Mass Model

    Get PDF
    We propose that the possible 750 GeV diphoton excess can be explained in the color-octet neutrino mass model extended with a scalar singlet Φ\Phi. The model generally contains NsN_s species of color-octet, electroweak doublet scalars SS and NfN_f species of color-octet, electroweak triplet χ\chi or singlet ρ\rho fermions. While both scalars and fermions contribute to the production of Φ\Phi through gluon fusion, only the charged members induce the diphoton decay of Φ\Phi. The diphoton rate can be significantly enhanced due to interference between the scalar and fermion loops. We show that the diphoton cross section can be from 3 to 10 fb for O(TeV) color-octet particles while evading all current LHC limits.Comment: 12 pages, 4 figures; v2: 13 pages, 4 figures, version to appear in EPJC, clarified a few things, updated numerical analysis using the most recent bound on color-octet fermions but without changing conclusions, corrected a mistake when quoting the branching ratio to Z gamma, added some references missed in v

    Radiative Neutrino Mass with Z3Z_3 Dark matter: From Relic Density to LHC Signatures

    Full text link
    In this work we give a comprehensive analysis on the phenomenology of a specific Z3\mathbb{Z}_3 dark matter (DM) model in which neutrino mass is induced at two loops by interactions with a DM particle that can be a complex scalar or a Dirac fermion. Both the DM properties in relic density and direct detection and the LHC signatures are examined in great detail, and indirect detection for gamma-ray excess from the Galactic Center is also discussed briefly. On the DM side, both semi-annihilation and co-annihilation processes play a crucial role in alleviating the tension of parameter space between relic density and direct detection. On the collider side, new decay channels resulting from Z3\mathbb{Z}_3 particles lead to distinct signals at LHC. Currently the trilepton signal is expected to give the most stringent bound for both scalar and fermion DM candidates, and the signatures of fermion DM are very similar to those of electroweakinos in simplified supersymmetric models.Comment: 40 pages, 24 figure
    corecore