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Ran Liao

JOINT MODELING OF BIVARIATE TIME TO EVENT DATA WITH

SEMI-COMPETING RISK

Survival analysis often encounters the situations of correlated multiple events

including the same type of event observed from siblings or multiple events experienced

by the same individual. In this dissertation, we focus on the joint modeling of bivariate

time to event data with the estimation of the association parameters and also in the

situation of a semi-competing risk.

This dissertation contains three related topics on bivariate time to event mod-

els. The first topic is on estimating the cross ratio which is an association parameter

between bivariate survival functions. One advantage of using cross-ratio as a depen-

dence measure is that it has an attractive hazard ratio interpretation by comparing

two groups of interest. We compare the parametric, a two-stage semiparametric and

a nonparametric approaches in simulation studies to evaluate the estimation perfor-

mance among the three estimation approaches.

The second part is on semiparametric models of univariate time to event with

a semi-competing risk. The third part is on semiparametric models of bivariate time

to event with semi-competing risks. A frailty-based model framework was used to

accommodate potential correlations among the multiple event times. We propose

two estimation approaches. The first approach is a two stage semiparametric method

where cumulative baseline hazards were estimated by nonparametric methods first

and used in the likelihood function. The second approach is a penalized partial
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likelihood approach. Simulation studies were conducted to compare the estimation

accuracy between the proposed approaches. Data from an elderly cohort were used

to examine factors associated with times to multiple diseases and considering death

as a semi-competing risk.

Sujuan Gao, Ph.D., Chair
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Chapter 1

Introduction

1.1 Overview

This dissertation is devoted to develop new methodologies in survival analysis of joint

models of bivariate time to events data with a semi-competing risk. This research

work is primarily motivated by some interesting problem emerging from observational

study of chronic diseases in aging cohort, in which a better understanding of chronic

diseases natural history is needed to better understand and identify risk factor, to

learn diseases relations, to design better health care and intervention for optimal

treatment.The data support through out this dissertation come from electronic med-

ical records (EMRs) in a longitudinal cohort of elderly African Americans enrolled in

the Indianapolis-Ibadan Dementia Project (IIDP)(Hendrie et al., 2001).

Multivariate survival data arises when one encounters the situation of corre-

lated multiple types of events including the same type of events observed from siblings

or multiple events experienced by the same individual. A naive approach analyzing

these survival data separately for each survival outcome by ignoring the association

among the multiple events may produce biased results. Furthermore, investigating

on how these multiple events relate to each other may offer important information

on the underlying mechanisms for these events. In this dissertation, we focus on the

joint modeling of bivariate time to event data with the estimation of the association

parameters and also in the situation of a semi-competing risk.
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By studying and reviewing some current and well established techniques in

survival analysis realm, the proportional hazards model, proposed by Cox (1972), is

certainly one of the most widely, used and studied regression model for time-to-event

data, the cox model focus on exploring the relationship between the baseline hazard

and treatment effect with the adjustment for the other explanatory variables. Extend

from cox model, in order to take into account the heterogeneity due to the unobserved

risk factor, Clayton (1978) and Vaupel et al. (1979) proposed to use frailty model

or mixed proportional hazards model. The frailty term which can be understand

as random effects, if these effects are subject-specific and unobserved heterogeneity

stands for overdispersion and the model is called univariate frailty model (Wienke,

2010). In the case when random effects are shared by groups of subjects, a clustering

effect is there, i.e. observations belonging to the same group are dependent. This is

the case of shared frailty models (Hougaard, 2012).

The integration of frailty and multi-event models can provide powerful survival

models to study the risk of many interrelated events while accounting for dependence

among multiple events. Many practical situations can be thought of in which such

integration is of interest. The main problem motivating our research arises from ob-

servational study of elder cohort, in which the participant usually was facing multiple

diseases due to aging. Thus, we need to take into account the dependence between

events when we conduct analysis and make inference .

The dissertation contains three related topics on bivariate time to event mod-

els. The first topic is on estimating the association parameter between bivariate

survival functions. The second is on semiparametric pseudo-likelihood and semi-

parametric penalized partial likelihood models of univariate time to event with a

2



semi-competing risk. The third part is on semiparametric models of bivariate times

to event with a semi-competing risk.

1.2 Covariate Dependent Cross Ratio of Bivariate Survival Times

Most current methods used in estimating the association parameter in bivariate time

to event data have used either the copula approach or a frailty approach where the

association parameter is treated as a constant parameter or as a nuisance. Cross-ratio

is an association parameter which measures the dependence structure between two

correlated failure times. One advantage of using cross-ratio as a dependence measure

is that it has an attractive hazard ratio interpretation by comparing two groups of

interest. In shared frailty models for bivariate survival data the frailty is identifiable

through the cross ratio function, which provides a convenient measure of association

for correlated survival variables. The cross ratio function may be used to compare

patterns of dependence across models and data sets.

To estimate the cross ratio as a function, Nan et al. (2006) partitioned the

sample space of the bivaratiate survival time into rectangular regions with edges par-

allel to the time axes and assumed that the cross ratio is constant in each retangular

region. Shih and Louis (1995) and Shih and Albert (2010) proposed a two stage

semiparametric likelihood based method to estimate constant cross ratio and piece-

wise cross ratio under competing risk setup, respectively. In the context of compet-

ing risks and nonparametric appraoches,Cheng and Fine (2008), Bandeen-Roche and

Ning (2008)and Ning and Bandeen-Roche (2014) proposed a nonparametric method

for estimating the piecewise constant time-varying cause-specific cross ratio using

the binned survival data based on the same partitioning idea for the sample space,

3



counted the concurrence events pair and discordinate events pair can formed up a

logistics-form of regression procedure for the estimation procedure. Recent years, Li

and Lin (2012), Othus and Li (2010) and Hsu and Moodie (2007) characterized the

dependence of bivariate survival data through the correlation coefficient of normally

transformed bivariate survival times. Such methods, however, require assumptions

of specific copula models for the joint survival function, for which appropriate model

checking techniques are lacking.

Hu et al. (2011) proposed an estimation approach for time dependent cross

ratio using a pseudo-partial likelihood approach. Build on Hu et al. (2011)’s method-

ology, we propose a cross ratio set-up which allows the modeling of covariate effects

on the association parameter. The advantage of such a model is that covariate effect

is linked with cross ratio explicitly. In addition, the non-parametric estimation ap-

proach does not require the specification of either the joint or the marginal survival

functions and thus is robust against model misspecification. A simulation study is

conducted to evaluate the estimation performance of this nonparametric estimation

approaches. The proposed estimation approach is used to estimate gender effects on

the association between time to coronary artery disease (CAD) and time to depression

using data from an elderly cohort.

1.3 Frailty based Semiparametric Models for Time to Event Data with a

Semi-competing Risk

Semi-competing risk often arises in biomedical research, in particular, in studies of

aging when individuals at risk of a particular disease die from other causes. As the

two-types of events are usually correlated, models for semi-competing risks should

4



properly take account of the dependence. In the literature, copula models are popular

approaches for modeling of such data. However, the copula model postulates latent

failure times and marginal distributions for the non-terminal event that may not

be easily interpretable in reality. Further, the development of regression models is

complicated for copula models. To overcome these issues, the well-known illness-death

models have been recently proposed for more flexible modeling of semi-competing risks

data.

In the second part of this dissertation, we proposed a frailty model approach

for a survival outcome with a semi-competing risk. The standard likelihood based ap-

proach for multivariate lognormal frailty models involves multi-dimensional integrals

over the distribution of the multivariate frailties, which almost always do not have

analytical solutions. Numerical solutions such as Gaussian quadrature rules, Monte

Carlo sampling have been routinely used in literature.However, as the dimension in-

creases, these approaches still remain computationally demanding.

In order to retain the nice interpretation of frailty model and overcome the

computational challenge, two estimation approaches are proposed and compared. The

first is a two-stage pseudo-likelihood approach where cumulative baseline hazards were

first estimated by a nonparametric method. Parameter estimation is then achieved by

maximizing the pseudo-likelihood functions where the estimated cumulative hazards

from stage one were used. In the second approach, we propose a penalized partial

likelihood function for parameter estimation and inference similarly to the concept

used in the Cox's partial likelihood. An estimation procedure based on penalized

pseudo-partial likelihood is used for estimating covariate effects. The penalized partial

likelihood is obtained by Laplace approximation to the true likelihood. Penalized
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Cox PH model discussed by Gray (1992); Perperoglou (2014) provided methods of

parameter estimation. A simulation study is conducted to compare the estimation

performance of these two approaches. The proposed estimation approach is used to

estimate gender effects on the time to coronary artery disease (CAD) with time to

death as a semi-competing risk.

1.4 Frailty-based Multi-event Semiparametric Models for Failure Time

Data with Semi-competing Risks

The third topic of this dissertation extends the models considered in the second part

to bivariate survival outcomes with a semi-competing risk.

In medical research, multi-event and multi-stage data arises when a individual

was at risk of multiple disease, or a certain disease progressed in several states. It

was crucial to study the inner structure and dependence between multiple diseases or

multiple states.

In this part, we propose to use frailty based semparametric model introduc-

ing random effects to account for unobserved risk factors, possibly shared by multi-

ple diseases or multiple states. For model estimation, we developed and evaluated

parametric, two stage semiparametric estimation and penalized partial likelihood ap-

proach.The two stage pseudo-likelihood approach and the penalized pseudo-partial

likelihood approach are also be used and compared in simulation studies.

In many epidemiological studies of the elderly population, it has been ob-

served that individuals at risk of one chronic condition tend to have increased risk of

other medical conditions with a substantial numbers having multiple chronic condi-

tions. Studying the co-occurrence of these conditions may identify common biological
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pathways linking these disorders and ultimately lead to effective treatment and pre-

vention strategies. Another complication facing the studies in aging is death due to

other causes which can be indirectly related to the conditions under study through

genetic or environmental exposures related to the individual’s susceptibility to both

disease and death. The proposed approaches were applied to data from the elderly

cohort to determine risk factors associated with CAD (Coronary Artery Disease) and

depression with death as the semi-competing risk.

1.5 Main Contribution and Structure of Dissertation

The work presented in this thesis contributes to research in survival analysis in follow-

ing areas: modeling methodology and data applications, and simulation techniques.

The main contribution to modeling methodology consists of proposing co-

variate dependent cross ratio estimation methods, and frailty based semiparametric

model in the presence of semi-competing risk data. Up to now, there existed no co-

variate dependent association measure for bivariate time to event data. Capturing

the dependent structure between multiple survival events is a challenging topic. Our

proposed cross ratio model offered a feasible approach to measure the dependence

between bivariate survival times. In addition, we propose to use frailty based model

approach to handle semi-competing risk data and multiple event, which captures the

transition between multiple events and also account for informative censoring caused

by the other event and death.

Two estimation approaches have been developed and investigated in the dis-

sertation: a parametric and a semiparametric approach. First, fully parametric infer-

ence, based on maximum marginal likelihood, is considered. Then, a semiparametric
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estimation approach, based on maximum penalized partial likelihood, is proposed and

investigated(Rotolo and Legrand, 2012; Rotolo et al., 2013).

Another contribution of our work is that we developed a general method in

multi-event research for simulating data according to a given scenario. Dependence

can be added between time variables of grouped subjects, to study the effect of cluster-

ing. Moreover, the simulation method is able to introduce, using copulas, dependence

between times of different transitions while fixing the marginal distributions accord-

ing to a given scenario. This is a useful tool to study, for instance, the robustness of

(frailty) multi-event models .

The structure of this dissertation is as follows. In Chapter 2, we focus on the

estimation of dependent association parameter: cross ratio between bivariate survival

times. In Chapter 3, we present two estimation approaches for semi-competing risk

models. In Chapter 4, we extent the semi-competing risk model presented in chapter

3 to bivariate time to event data. Chapter 5 gives concluding marks.
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Chapter 2

Covariate Dependent Cross Ratio of Bivariate Survival Times

2.1 Abstract

Cross ratio is formed as the ratio of two conditional hazard rates for one events given

the other event. Inherited the nice interpretation of hazard ratio from survival analysis

setup, cross ratio can be interpreted as hazard ratio of one event conditional the status

of the other event. It is very meaningful to investigate the covariate effect on the cross

ratio, which can be a useful tool to explain contribution of the certain component

to the dependent between two time to events. In this paper, first, we extended two

methodologies in constant cross ratio estimation into covariate adjust cross ratio with

multiplicative covariate effect set up, which are Clayton copula model and Shih and

Louis(1995) two stage semiparametric model. Then, we conducted a simulation study

comparing Hu et al. (2011)’s non-parametric estimator with parametric estimator

from copula approach and semi-parametric estimator from Shih and Louis (1995)’s

two stage approach. In the mean time, we presented a comprehensive review and

discussion of these three methodologies. To illustrate three estimation methodologies,

we analyzed data from Indianapolis-Ibadan Dementia Project (IIDP) to investigate

the gender effect between cardiovascular event and depression.
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2.2 Introduction

Bivariate survival outcomes are often collected in medical studies. In many cases,

the two failure times may be correlated. Earlier interests have focused on determin-

ing the correlations between disease occurrence times of family members in genetic

epidemiology such as the age of onsets to asthma or type I diabetes in twin studies

(Hyttinen et al., 2003; Thomsen et al., 2011). However, there is also an increasing

interest in examining times to two related diseases observed from the same individ-

ual in order to identify common pathways and potential risk factors underlying both

diseases. For instance, there have been considerable research efforts focusing on the

link between coronary artery disease (CAD) and depression. CAD and depression

are both common in late life and have been shown to be associated with increased

risk of disability and mortality(Callahan et al., 1998). A “vascular depression hy-

pothesis” was first proposed by Alexopoulos et al. (1997) when the authors proposed

that cardiovascular disease may predispose, precipitate, or perpetuate some geriatric

depressive syndromes. However, the vascular depression hypothesis was recently re-

placed by a new model describing the association between CAD and depression as

the outcome of ”two intertwined, mutually reinforcing disorders”(de Jonge and Roest,

2012).Evidence supporting this new bi-directional model between CAD and depres-

sion includes the increased risk of CAD in people suffering from depression and that

late-life depression has been found to be associated with neuroimaging findings for

subclinical cerebrovascular disease(de Groot et al., 2000; Hawkins et al., 2014). A

gender difference in CAD and comorbid depression has been observed prompting a

search for a common immunological basis including the role of inflammation in both
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diseases (Möller-Leimkühler, 2010; Wright et al., 2014). Therefore, analysis of bi-

variate survival outcomes includes estimating the dependence between the two times

to events and determining the contributions from common risk factors as the two

primary objectives.

The dependence between two survival times has been discussed previously in

the literature (Diva et al., 2008; Li and Lin, 2012; Li et al., 2008; Rondeau et al.,

2012) . One naive approach is to use global rank measures such as Kendall’s τ and

Spearman’s coefficient ρ(Hougaard, 2012; Kendall, 1948). However, two major issues

were not addressed using these estimators: first, both estimators cannot incorporate

censoring information leading to potentially biased and inefficient estimates; second,

both estimators do not account for covariate contribution to the association of the

two event times.

In contrast to the global rank based association measures, cross ratios, for-

mulated as the ratio of two conditional hazard functions, offer a direct measure of

dependence between two survival times that can account for censoring and accom-

modate potential covariates(Kalbfleisch and Prentice, 2002). There are three broad

classes of estimation approaches for cross ratio estimation.

The first is a full parametric approach. Clayton (1978) introduced the Clay-

ton copula model as an explicit closed-form bivariate survival function model with

a constant cross ratio. Oakes (1982) demonstrated that the Clayton copula model

can be derived using a frailty framework, where a common latent variable induces a

correlation between events. A parametric approach will require the specification of

a bivariate survival model, such as the Clayton model, and the simultaneous estima-

tion of the marginal survival functions and the cross ratio parameter. The second
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is a semi-parametric approach developed by Shih and Louis (1995). The marginal

survival functions were first estimated by Kaplan-Meier estimators and used in the

bivariate survival function to derive the cross ratio estimate. Shih and Louis (1995)

showed that the two stage semi-parametric approach is efficient when the marginal

survival functions were unknown. Lawless and Yilmaz (2011) compared a one stage

semiparametric maximum likelihood (ML) approach and a two stage semi-parametric

pseudo maximum likelihood (PML) approach for the Clayton model and Frank cop-

ula. In the one stage semi-parametric ML approach, the marginal functions, and the

association parameter were estimated using non-parametric methods simultaneously.

Lawless and Yilmaz (2011) concluded that that the two-stage semi-parametric PML

was the preferable approach for marginal distribution estimation in most situations

that do not involve covariates. When covariates were presented in the marginal dis-

tributions, however, the one stage ML method can be substantially better in some

settings. When the bivariate survival model is misspecified, Lawless and Yilmaz

(2011) showed that the two stage PML can perform worse than the one stage ML for

cross ratio estimates. They also pointed out that one stage semiparametric approach

was more computationally intensive compare to two stage method.

Both the parametric and the semi-parametric approaches assume a constant

cross ratio.Nan et al. (2006) considered a piece-constant cross ratio set up by parti-

tioning the sample space of bivariate survival function into rectangles each of which

was assumed to have a constant cross ratio. Hu et al. (2011) proposed a nonparamet-

ric estimation approach which allowed cross ratio to be modeled as a time varying

function. For estimation, Hu et al. (2011) constructed an objective function by mim-

icking the partial likelihood in the David (1972) propertional hazard model.
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No previously published studies have considered modeling covariate effect in

the cross ratio. Given the interpretation of cross ratio as a conditional hazard ratio

for one event given the other event, It will be interesting to determine the effect of

covariates on the cross ratio in order to account for the change in the association

between two events. In this paper, we extend Clayton (1978) ’s copula model and

Shih and Louis (1995)’s two stage semiparametric model into covariate adjusted cross

ratio setup with multiplicative covariate effect similar to Hu et al. (2011). We present

a simulation study comparing Hu et al. (2011) ’s non-parametric estimator with the

parametric estimator from the copula approach and a two stage semi-parametric

estimator from Shih and Louis (1995). The proposed method is illustrated using data

from the Indianapolis-Ibadan Dementia Project (IIDP) to determine gender effect on

the associating between time to coronary artery disease (CAD) and time to depression

(Gao et al., 1998; Hendrie et al., 2001; Unverzagt et al., 2001).

In the following sections, we present the notations and model set up in Section

2. We describe estimation approaches in Section 3 and results from a simulation

study in Section 4. We present results from the IIDP data analysis in Section 5 and

conclude the article with a discussion in Section 6.

2.3 Notation, Definition and Model Setup

In this section, we introduce some common notation and definition in survival analysis

and cross ratio analysis

Consider a pair of correlated continuous failure times (T1, T2) that are subject

to right censoring by a pair of censoring times (C1, C2). Let (S1, S2) and (f1, f2)

denote the corresponding marginal survival functions and density functions, respec-
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tively. Let (h1, h2) and (H1, H2) denote the corresponding marginal hazard and cu-

mulative hazard, respectively. We assume that censoring times are independent of

failure times. Suppose we observe n independent and identically distributed vectors

of (X1, X2,∆1,∆2) , where X1 = min(T1, C1), X2 = min(T2, C2),∆1 = I(T1 ≤ C1)

and ∆2 = I(T2 ≤ C2). Here I(·) denotes the indicator function. We further assume

that there are no ties among the two observed times.

Cross ratio function of T1 and T2 at time (t1, t2) is defined as

α(t1, t2) =
h2(t2|T1 = t1)

h2(t2|T1 > t1)
=
h1(t1|T2 = t2)

h1(t1|T2 > t2)
(2.1)

The function can be interpreted as the ratio of the hazard rate of the conditional

distribution of T1, given T2, to that of T1. given T2 ≥ t2.(Oakes, 1989) We have

h(t1|T2 = t2) = −∂1S1(t1|T2 = t2)

S1(t1|T2 = t2)

= −∂1,2S(t1, t2)

∂2S(t1, t2)

and

h(t1|T2 ≥ t2) = −∂1S(t1, t2)

S(t1, t2)

Then,

α(t1, t2) =
∂1,2S(t1, t2)× S(t1, t2)

∂1S(t1, t2)× ∂2S(t1, t2)

=
f(t1, t2)× S(t1, t2)

∂1S(t1, t2)× ∂2S(t1, t2)
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Where,

∂1f(t1, t2) =
∂f(t1, t2)

∂t1

∂2f(t1, t2) =
∂f(t1, t2)

∂t2

∂1,2f(t1, t2) =
∂f(t1, t2)

∂t1∂t2

f(t1, t2) is a function of t1 and t2.

When α(t1, t2) = 1, the two events are independent; when α(t1, t2) > 1, the

two events are positively correlated; when α(t1, t2) < 1, the two events are negatively

correlated. Hu et al. (2011); Oakes (1982, 1986, 1989) Figure (2.1) demonstrate the

joint survival distribution of bivariate survival model under different cross ratio using

perspective 3D surface plot and 2D contour plot. When crossratio = 3, the two time

to event were positively correlated, the joint survival will increase as two marginal

survival increase, the contour plot (Figure (2.1) bottom left) showed concave feature.

When crossratio = 1, the two events were independent, the joint survival is the direct

product of two marginal survival S = S1(t) · S2(t). When crossratio = 0.5, the two

events were negatively correlated, the joint survival showed twisted structure over the

space.

Let W be a set of covariates. Cross ratio function conditional on covariates

can be defined as:

α(t1, t2; w) =
h2(t2|T1 = t1,W = w)

h2(t2|T1 > t1,W = w)
=
h1(t1|T2 = t2,W = w)

h1(t1|T2 > t2,W = w)
(2.2)

15



Figure 2.1: The Joint Distribution of Bivariate Survival Model Plot under Varying
Cross Ratio: the first row is the 3-D plot, the height represents joint survival proba-
bility and the marginal of survival distribution of T1 and T2 are identical; the second
row is the contour plot, the number on the black line represent the value of joint
survival probability
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Here, we further assume that the covariate W has a multiplicative effect on the cross

ratio:

α(β; t1, t2) = α(β; t1, t2,w) = α0(t1, t2) · exp(w · β) (2.3)

where α0(t1, t2) is the cross ratio for a reference value defined by w, and exp(w · β)

is an exponential function of w. For example, if W = 0 is to be used as a reference

for the effect of W , then

α0(t1, t2) =
h2(t2|T1 = t1,W = 0)

h2(t2|T1 > t1,W = 0)
=
h1(t1|T2 = t2,W = 0)

h1(t1|T2 > t2,W = 0)
(2.4)

Model (2.3) effectively separates the reference cross ratio function and the covariate

effect thus providing an opportunity to model each piece separately.

2.4 Estimation Approaches

In this section, we describe three estimation approaches. The first two approaches are

based on the parametric formation of Clayton copula. Thus, these two approaches

can only accommodate discrete covariates in order to achieve constant cross ratio

within each level of the covariate thus retaining the Clayton copula form. The third

approach is nonparametric following the spirit of (Hu et al., 2011) where both discrete

and continuous covariates can be handled(Hu, 2011).
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2.4.1 Bivariate Clayton Copula Approach

The definition of cross ratio (2.1) is equivalent to the following second-order partial

differential equation:

∂2 − log(S(t1, t2))

∂t1∂t2
+ (α(β; t1, t2)− 1)

∂ − log(S(t1, t2))

∂t1

∂ − log(S(t1, t2))

∂t2
= 0 (2.5)

where S(t1, t2) is the joint survival function of (T1, T2) at (t1, t2).

When α(β; t1, t2) = α is constant, it can be shown that equation (2.5) has a

unique solution of the form

Cα(t1, t2) = [S1(t1)−(α−1) + S2(t2)−(α−1) − 1]−
1

α−1 (2.6)

where Cα(t1, t2) is called Clayton copula (Clayton, 1978). The formation of Clayton

copula is differed by the value of cross ratio α.

Cα(t1, t2) =



[S1(t1)−(α−1) + S2(t2)−(α−1) − 1]−
1

α−1 α > 1

S1(t1) · S2(t2) α = 1

max([S1(t1)−(α−1) + S2(t2)−(α−1) − 1]−
1

α−1 , 0) α < 1

where S1 and S2 are the marginal survival functions of T1 and T2.

Clayton Copula and Archimedean Family

In fact the Clayton copula belongs to an important family of copulas known as

Archimedean copulas which have a simple form with a variety of dependence struc-
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tures. The copula function C is generally define as multivariate function which can

couples the joint survival function to its univariate margins in a manner completely

analogous to the way in which a copula connects the joint distribution function to

its margins. (Nelsen, 2007) The support of copula approach is supported by Sklar’s

canonical representation theorem.

Theorem 1 (Sklar’s Canonical Representation) Let S be an N-dimensional

survival function with margins S1, . . . , SN . Then, S has a copula representation:

S(t1, . . . , tN) = C(S1(t1), . . . , SN(tN))

The copula C is unique if the margins are continuous.

Archimedean copula model has the following representation:

H(u, v) = φ−1(φ(u) + φ(v)), (u, v) ∈ [0, 1]2

where φ : [0, 1] → [0,+∞] is a function satisfying φ(1) = 0, φ(0) = ∞, φ′(x) < 0 and

φ′′(x) > 0. Then H(u, v) is a distribution function on[0, 1]2 with uniform marginals.

Commonly used Archimedean copula models include:

• Clayton copula, where φ(u, α) = u−(α−1) − 1,

• Frank copula, where φ(u, θ) = log 1−θ
1−θu ,

• Gumbel copula, where φ(u, θ) = (− log u)θ.
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Parametric Clayton Copula Likelihood

The joint likelihood of bivariate time to events data can be written as

L =
∏
i

f(t1, t2)δ1·δ2 ·−S12(t1, t2)δ1·(1−δ2) ·−S21(t1, t2)(1−δ1)·δ2 ·S(t1, t2)(1−δ1)·(1−δ2) (2.7)

where S(t1, t2)is the joint survival function and

S12(t1, t2) =
∂S(t1, t2)

∂t1
(2.8)

S21(t1, t2) =
∂S(t1, t2)

∂t2
(2.9)

f(t1, t2) =
∂2S(t1, t2)

∂t1∂t2
(2.10)

Under the Clayton copula structure. The likelihood can be written as

Li = f(ti1, ti2)∆i1∆i2 · [−
∂Cα(β;t1,t2)(ti1, ti2)

∂ti1
]∆i1(1−∆i2)

× [−
∂Cα(β;t1,t2)(ti1, ti2)

∂ti2
](1−∆i1)∆i2 · Cα(β;t1,t2)(ti1, ti2)(1−∆i1)(1−∆i2)

(2.11)

Based on (2.6) and ∂S(t)
∂t

= −h(t) · S(t), we have

By symmetry,

∂Cα(β;t1,t2)(t1, t2)

∂t2
(2.12)

= −S(t1, t2) · {S1(t1)−(α(β;t1,t2)−1) + S2(t2)−(α(β;t1,t2)−1) − 1}−1

· S2(t2)−(α(β;t1,t2)−1) · h2(t2)
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Then

∂Cα(β;t1,t2)(t1, t2)

∂t1
(2.13)

= −{S1(t1)−(α(β;t1,t2)−1) + S2(t2)−(α(β;t1,t2)−1) − 1}−
1

α(β;t1,t2)−1
−1

· S1(t1)−(α(β;t1,t2)−1) · h1(t1)

= −S(t1, t2) · {S1(t1)−(α(β;t1,t2)−1) + S2(t2)−(α(β;t1,t2)−1) − 1}−1

· S1(t1)−(α(β;t1,t2)−1) · h1(t1)

f(t1, t2) =
∂2Cα(β;t1,t2)(t1, t2)

∂t1∂t2
(2.14)

= (1 + α(β; t1, t2)) · h1(t1) · S1(t1)−(α(β;t1,t2)−1)

· {S1(t1)−(α(β;t1,t2)−1) + S2(t2)−(α(β;t1,t2)−1) − 1}−
1

α(β;t1,t2)−1
−2

· h2(t2) · S2(t2)−(α(β;t1,t2)−1)

The joint likelihood for all the observation is L =
∏n

i=1 Li. Let φ = (γ1
′,γ2

′,β),

where γ1
′,γ2

′ are the parameters in the marginal survival distribution S1(t1) and

S2(t2)), respectively. β is the parameter for the covariate in the cross ratio function.

Uγ1
′(φ), Uγ2

′(φ), Uβ(φ) are the score functions which are essentially the first deriva-

tive of the log of (2.11) for γ1
′,γ2

′,β. Maximum likelihood estimate φ̂ is the solution

to Uγ1
′(φ) = 0, Uγ2

′(φ) = 0, Uβ(φ) = 0. Under Cox and Hinkley (1979) regularity

conditions , n
1
2 (φ̂− φ0) converges to multivariate normal with mean vector zero and
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variance-covariance matrix I−1, where I is the information matrix obtained from the

second derivative of likelihood equation (2.11)(Cox and Oakes, 1984). Given full para-

metric functions of the marginal survival functions, maximum likelihood estimates of

β as well as parameters in the marginal survival functions can be obtained.

2.4.2 Two Stage Semiparametric Estimation Approach

In the parametric approach described above, the two marginal survival functions are

assumed to be fully specified and the joint survival model follows a Clayton copula.

In a two-stage semiparametric estimation approach, the marginal survival functions

are estimated by the nonparametric Kaplan-Meier approach as Ŝ1 and Ŝ2 first. The

cross ratio parameter, β̂, is then estimated at the second stage by maximizing the

pseudolikelihood function L(Ŝ1, Ŝ2,β).

Write (ui, vi) for the non parametric estimator of (S1(X1i), S2(X2i)). Then

given (ui, vi), j = 1, . . . , n, the likelihood of β is

Lpseudo(β, ui, vi) =
∏
i

fα(β;t1,t2)(ui, vi)
∆1i·∆2i ·

∂Cα(β;t1,t2)(ui, vi)

∂ui

∆1i·(1−∆2i)

·
∂Cα(β;t1,t2)(ui, vi)

∂vi

(1−∆1i)·∆2i

· Cα(β;t1,t2)(ui, vi)
(1−∆1i)·(1−∆2i)

(2.15)

where

C(u, v;α(β; t1, t2)) = {u−(α(β;t1,t2)−1) + v−(α(β;t1,t2)−1) − 1}−
1

α(β;t1,t2)−1 (2.16)

∂C

∂u
= {u−(α(β;t1,t2)−1) + v−(α(β;t1,t2)−1) − 1}−

1
α(β;t1,t2)−1

−1 · u−(α(β;t1,t2)−1)−1 (2.17)
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∂C

∂v
= {u−(α(β;t1,t2)−1) + v−(α(β;t1,t2)−1) − 1}−(α(β;t1,t2)−1)−1 · v−

1
α(β;t1,t2)−1

−1
(2.18)

∂2C

∂u∂v
=(1 +

1

α(β; t1, t2)− 1
){u−(α(β;t1,t2)−1) + v−(α(β;t1,t2)−1) − 1}−(α(β;t1,t2)−1)−2

(2.19)

· u−(α(β;t1,t2)−1)−1 · v−(α(β;t1,t2)−1)−1

Let l(β, S1, S2) be the log likelihood function in equation (4.8) and U(β, S1, S2)

the score function of β, then

U(β, Ŝ1, Ŝ2) =
∂l(β, Ŝ1, Ŝ2)

∂β
(2.20)

The pseudo likelihood estimator β? is the solution to score function.

To estimate standard error, we extend the results from Theorem 2 in Shih and

Louis (1995) by chain rule of derivation.We use the notation from Shih and Louis

(1995). Let cross ratio α be a function of covariate of interest β, i.e. α(β). Then,

according to chain rule, we have

Wβ =
∂l(α(β; t1, t2), u, v)

∂β
=
∂l(α(β; t1, t2), u, v)

∂α(β; t1, t2)
· ∂α(β; t1, t2)

∂β
(2.21)

Vβ =
∂2l(α(β; t1, t2), u, v)

∂β2

=
∂2l(α(β; t1, t2), u, v)

∂α(β; t1, t2)2
· (∂α(β; t1, t2)

∂β
)2 +

∂l(α(β; t1, t2), u, v)

∂α
· ∂

2α(β; t1, t2)

∂β2

Vβ,1 =
∂l(α(β; t1, t2), u, v)

∂β∂u
=
∂l(α(β; t1, t2), u, v)

∂α(β; t1, t2)∂u
· ∂α(β; t1, t2)

∂β

Vβ,2 =
∂l(α(β; t1, t2), u, v)

∂β∂v
=
∂l(α(β; t1, t2), u, v)

∂α(β; t1, t2)∂v
· ∂α(β; t1, t2)

∂β
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The estimator for standard error can be expressed as

τ̂ =
τ̂ 2

1 + τ̂ 2
2

τ̂ 4
1

, (2.22)

where τ̂ 2
1 is the model based variance estimator and can be obtained from the second

derivative of pseudo likelihood

τ̂ 2
1 =

1

2

n∑
i=1

−Vβ(β?, Ŝ1(X1i, X2i)),

τ̂ 2
2 =

1

n

n∑
i=1

[Î1(X1i,∆1i,β
?) + Î2(X2i,∆2i,β

?)]2

where

Î1(X1k, δ1k,β
?) =

1

n

∑
k

Vβ,1(β?, Ŝ1(X1k, X2k))Î
0
1 (X1k, δ1k)(X1k),

Î2(X2k, δ2k,β
?) =

1

n

∑
k

Vβ,2(β?, Ŝ1(X1k, X2k))Î
0
2 (X2k, δ2k)(X2k)

and

Î0
1 (X1i, δ1i)(X1k) = −Ŝ1(X1k){

IX1i ≤ X1k,∆1i = 1

p̂1i

−
∑

X1l≤X1i,X1k

∆Λ̂1(X1l)

p̂1l

},

Î0
2 (X2i, δ2i)(X2k) = −Ŝ2(X2k){

IX2i ≤ X2k,∆2i = 1

p̂2i

−
∑

X2l≤X2i,X2k

∆Λ̂2(X2l)

p̂2l

}

∆Λ̂i(t) is a Nelson’s estimator, which can be calculated as ∆Λ̂i(t) = I{Ȳi(t)>0}
Ȳi(t)

dN̄i(t),

where Ȳi(t) =
∑

j I{Xij ≥ t} and Ni(t) =
∑

j Nij(t). β
? is the solution for score

equation in (2.20). Shih and Louis (1995) showed that if cross ratio α(β; t1, t2) = α is

constant, under regularity conditions τ̂ 2 is a consistent estimator for standard error.
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2.4.3 Nonparametric Pseudo-Partial Likelihood Estimation Approach

The nonparametric approach from Hu et al. (2011) is motivated by the Cox propor-

tional hazards model, which is use to capture the local feature of the dependence

structure (Hu, 2011). The idea is to group observations into distinct strata by co-

variate values, then using one survival time as exposure and using the other survival

time as the outcome in order to construct a pseudo-partial likelihood function.

The procedure to construct the pseudo partial likelihood followed the in-

terpretation of conditional hazard ratio in epidemiology terminology. If we treat

{j : T1j = t1} and {j : T1j > t1} as“exposure” and“non-exposure” groups, respec-

tively, then from (2.2) , the cross ratio can be interpreted as the hazard ratio of T2

between these two groups within the stratum W = w. Given t1 = X1i, by mimick-

ing the partial likelihood used in the Cox’s models, Hu et al. (2011) proposed the

following pseudo-partial likelihood function:

n∏
j=1

[
h2(X2j|X1j = X1i,wj = wi)

I(X1j=X1i)∑
X2k≥X2j

I(X1k ≥ X1i)h2(X2j|X1j = X1i,wj = wi)I(X1k=X1i)
]I(X1j≥X1i)∆2j∆1i

(2.23)

n∏
j=1

[
h2(X2j|X1j > X1i,wj = wi) · α(X1i, X2j,wj)

I(X1j=X1i)∑
X2k≥X2j

I(X1k ≥ X1i)h2(X2j|X1j > X1i,wj = wi) · α(X1i, X2j,wj)I(X1k=X1i)
]Iij

(2.24)

Where Iij = I(X1j ≥ X1i)∆2j∆1i. With some simplification, the above equation can

be write as

n∏
j=1

[
α(X1i, X2j,wj)

I(X1j=X1i)∑
X2k≥X2j

I(X1k ≥ X1i)α(X1i, X2j,wj)I(X1k=X1i)
]I(X1j≥X1i)∆2j∆1i (2.25)
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Denote (4.9) as L
(1)
i . Considering the symmetric structure of the definition of

θ(t1, t2, w), given t2 = X2i, we have :

L
(2)
i =

n∏
j=1

[
α(X2i, X1j,wj)

I(X2j=X2i)∑
X1k≥X1j

I(X2k ≥ X2i)α(X2i, X1j,wj)I(X2k=X2i)
]I(X2j≥X2i)∆1j∆2i (2.26)

The finial pseudo-partial likelihood function can be obtained, by multiplying these

two objective functions from all subjects,

Ln =
n∏
i=1

L
(1)
i · L

(2)
i (2.27)

The estimator obtained by maximizing (3.28) is then called the pseudo-partial likeli-

hood estimator.

Hu et al.(2011) proved that, under some regularity conditions, the maximum

pseudo-partial likelihood estimator β have n
1
2 (β̂ − β) converges in distribution to

a normal random variable with mean zero and variance I(β)−1Σ(β)I(β)−1, where

I(β) = 2E(∆1 · ∆2 · w2) and Σ(β) is the asymptotic variance for Un(β) = ∂ logLn
∂β

,

which can be estimated using sample variance.

For continuous covariates, the observation with ”relative close” covariate value

can be combined into the same ”group”. This can be achieved by replacing the

indicator function I(Wj = Wi) by a kernel function Kh(Wj −Wi) in (4.9) and (4.10).

2.5 Simulation Study

We conducted a simulation study to evaluate the performance of these three estima-

tion approaches under covariate dependent cross ratio setup. Since simulating data
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from a bivariate distribution with an arbitrary cross ratio function is most possible

because there may not be a corresponding closed form survival function, we simulated

data from a Clayton model with piecewise constant cross ratio following Nan et al.

(2006). This simulation setup had also been used in He and Lawless (2003).

Two simulation scenarios were considered, the first scenario was used to demon-

strate the performance of each estimation approach under model is correctly specified

and with identical marginal distribution; the second scenario was used to demon-

strate the performance of each estimation approach under model is misspecified. For

all three scenarios both equal and unequal censoring percentage of T1 and T2 were

considered.

2.5.1 Data Setup

Bivariate data (T1i, T2i), i = 1, . . . , n, were generated one component at a time. First,

T1i was generated from the uniform variate ui1 ∼ U [0, 1] by

Ti1 = [
− log(ui1)

λ1

]
1
p1 (2.28)

Then, Ti2 was generated from the independent variate ui2 ∼ U [0, 1] by

Ti2 = [
1

−(αi(β; t1, t2)− 1)
· log(1− u1−αi(β;t1,t2)

i1 + u
1−αi(β;t1,t2)
i1 · u

− αi(β;t1,t2)

αi(β;t1,t2)−1

i2 )

λ2

]
1
p2

(2.29)

In our simulation study, the cross ratio function was setup as αi(β; t1, t2) = α0 ·

exp(β ·wi) and α0 = 3 and β = 0.5, and we used wi ∼ Bernoulli(0.5). We considered

both uncensored and censored samples. For the censored cases, bivariate censoring
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times Ci1 and Ci2 were generated independently from uniform distributions.C ∼

Uniform(0, 4.8) or C ∼ Uniform(0, 4.1), with probability of censoring 10% or 30%,

respectively. For each scenario, we generated 1000 simulate samples; sizes n = 100,

n = 400 and n = 800 were considered.

For each estimation approach, we calculated relative bias, standard error esti-

mate, and the estimated coverage probability rates of 95% confidence intervals using

the asymptotic normal distribution assumption for each of the estimates. The relative

bias were calculated as the difference between estimates and true value divided by

the true value, β̂−β
β

.

2.5.2 Simulation Results when the Model is Correctly Specified

Table (2.1) summarized the simulation results for model is correctly specified scenario,

the relative bias, model based standard error, empirical standard error of paramet-

ric Clayton copula approach, semiparametric two stage approach and nonparametric

pseudo partial likelihood estimators of the association are given. The data was gen-

erated from Clayton copula with two levels of cross ratio and identical exponential

distribution as marginal survival. The marginal survival were generated from iden-

tical exponential distribution, Si(t) = exp(−t), where i = 1, 2. And the true value

of β was 0.5. The Table (2.1) presented the results for equal percentage censoring

scenario and unbalanced censoring senior.

For no censoring case, the bias of parametric Clayton copula estimates was

the smallest among three estimation approach, this results was as expected since the

data were generated from Clayton copula and Clayton copula estimation approach

can revival all the information in the simulated data by using correct likelihood. We
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also found that, as expected, the bias and error estimates were decreasing as sample

size increasing for all three estimates.

When censoring percentages were equal, the bias and error estimates were

increasing as censoring percentage increasing. We also found that under moderate

percentage of censoring Clayton copula approach performed adequately well, but if

the censoring percentage were considerable, the performance of Clayton copula ap-

proach was not ideal compare to two stage semiparametric approach and nonparamet-

ric pseudo partial likelihood approach. And the two stage semiparametic estimates

and non-parametric pseudo partial likelihood estimates performed more robust results

against censoring compare to Clayton copula approach. But among three estimates,

the nonparametric pseudo partial likelihood(PPL) estimates had smallest inflamma-

tion percentage of the bias, which indicated that the non parametric PPL estimate

was the most robust estimates against censoring.

In unbalanced censoring scenario, we found that nonparametric PPL estimates

was the most robust and accurate estimate among three estimates. Both parametric

Clayton copula estimate and semiparametric two stage estimate approach were very

sensitive to unbalanced censoring scenario. Especially, the performance of these two

estimates were quite poor if the censoring percentage was quite different between two

event, this drawback may resulted by using the Clayton copula structure during the

estimation for these two approaches, since both parametric Clayton copula approach

and semiparametric two stage approach were highly relied on Clayton copula struc-

ture. From the likelihood formula in (2.11), the unbalanced censoring won’t influence

much on the joint survival S(t1, t2) = Cα(t1, t2), but the ∂S(t1,t2)
∂t1

= ∂Cα(t1,t2)
∂t1

and

∂S(t1,t2)
∂t2

= ∂Cα(t1,t2)
∂t2

will be influenced due to the correlation between two events.
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2.5.3 Simulation Results when the Model is Misspecified

Table (2.2) summarized the simulation results for model is misspecified specified,

the relative bias, model based standard error, empirical standard error of paramet-

ric Clayton copula approach, semiparametric two stage approach and nonparametric

pseudo partial likelihood estimators of the association are given.The data were gen-

erated from Clayton copula model with Weibull distribution as identical marginal,

Si(t) = exp(−2 · t 13 ), where i = 1, 2.

From the Table (2.2), we found that the compare to the semiparametric two

stage estimate and nonparametric PPL estimate, the Clayton copula estimate was

more sensitive to the structure of the marginal survival. If the marginal is misspec-

ified, the estimate from Clayton copula approach performed poorly compare to the

others. The two stage estimation was much less affected by the misspecification of

the marginal model in contrast to the parametric approach, since in semiparametric

two stage approach, the marginal distributions were estimated in the first stage us-

ing nonparametric estimates, so it can handle the misspecification of marginal in the

first stage and lead to a relative accurate cross ratio estimate in the second stage.

The nonparametric pseudo partial likelihood approach provides superior and robust

estimation compare to the other two approaches, since the nonparametric approach

was not rely on the information of marginal distribution.
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2.6 Data Application: Estimate Gender Effect in Cross Ratio between

Time to CAD and Depression

In this section, we demonstrate our proposed method in real data application example.

2.6.1 Indianapolis-Ibadan African American Cohort

To illustrate the three estimation approaches in covariate dependent cross ratios, we

present a data analysis exploring potential gender differences in the association be-

tween time to coronary artery disease (CAD) and time to depression using data from

the Indianapolis-Ibadan Dementia Project (IIDP). The Indianapolis-Ibadan demen-

tia project (IIDP) was a 20 year National Institute on Aging funded a longitudinal

study of dementia and its risk factors in elderly community-dwelling African Ameri-

cans living in Indianapolis, Indiana and elderly community-dwelling Yoruba living in

Ibadan, Nigeria. Recently, data from the African-American participants in the study

were merged with data from the Indiana Network for Patient Care, a regional health

information exchange, allowing us to examine medical conditions such as CAD and

depression, using electronic medical records(EMR) obtained in the routine care of

older adults.

For our analysis, the study population consisted of African American partici-

pants of the IIDP. All were age 65 or older residing in Indianapolis, Indiana. Recruit-

ment was conducted at two-time points. During the first recruitment in 1992, 2212

African Americans age 65 or older living in Indianapolis were enrolled in the study.

In 2001, the project enrolled 1893 additional African American community-dwelling

participants 70 years and older. All participants agreed to undergo regular follow-up
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cognitive assessment and clinical evaluations. Details on the assembling of the orig-

inal cohort and the enrichment cohort were described elsewhere.Hall et al. (2009);

Hendrie et al. (2001) Electronic medical records from 1992 to December 31, 2014,

were retrieved as a re-identified data set to examine cardiovascular diseases and other

risk factors. There were 4105 participants enrolled. After excluding 854 participants

who did not have EMR and 28 participants who had CAD or depression before en-

rollment, there were 3223 participants free of CAD and depression at baseline. Mean

age at baseline was 75.6 (standard deviation=6.38) and 68.04 % were women. In

Table 2.3 we present the number of participants with incident CAD, depression and

both events by gender. Female participants had a higher percentage of depression

events and male participant have a higher percentage of CAD events, in addition, the

female participants had higher percentages of experience both depression and CAD

events compare to male group. Figure (2.2) is the survival plot of CAD event and

depression by gender group, from which we can see that the two events are somewhat

correlated and there is a slight difference by gender.

Table 2.3: Demographic Characteristic of IIDP Data with Number of Event and
Incidence Rate by Each Gender Group

Gender Total CAD Depression CAD and Depression

Female 2192 822 (37.5%) 479 (21.85%) 193 (9.55%)

Male 1031 396(38.4%) 138 (13.38%) 62 (6.01%)

Total 3223 1191(36.95%) 617(19.14%) 271(8.4%)

In Table 2.4, we present the median age for each disease onset by gender and

the status of the other disease. For the male group, we found that participants who

had one disease had an earlier onset of the other disease. However, female participants
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with depression actually had a slightly later onset of CAD while female participants

with CAD had the similar age of onset for depression as those without CAD. The

Figure 2.2 is the cumulative hazard plot for time one disease onset give the other

disease status for each gender. From Figure 2.2, we observed that the male group

tend to have more close association compare to female group. This result showed

that there maybe gender difference in the association between the two diseases.

Table 2.4: Median Age Onset for Each Disease by Gender and the Status of the Other
Disease

CAD Depression

Total Female Male Total Female Male

Total 79.01 80.21 79.03 Total 80.23 80.06 80.4

Depression 80.19 80.89 76.39 CAD 80.48 81.05 79.81

No Depression 79.58 79.94 79.2 No CAD 79.01 78.91 81.05

CAD: Cardiovascular event

DP: Depression

2.6.2 Estimate Gender Effect in Cross Ratio between Time to CAD and

Depression

Denote tCAD as time to CAD and tDP as time to depression; M as male group and F

as female group; hCAD(·) as hazard for CAD and hDP as hazard for depression. To

estimate the cross ratio as a function of gender, we use following multiplicative model

θ(tCAD, tDP ;Gender = M) =
hDP (tDP |TCAD = tCAD, Gender = M)

hDP (tDP |TCAD > tCAD, Gender = M)

=
hCAD(tCAD|TDP = tDP , Gender = M)

hCAD(tCAD|TDP > tDP , Gender = M)
(2.30)
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Figure 2.2: Cumulative Hazard Plot of Two Diseases by Gender Group: The first
row is the cumulative hazard of time to CAD by Male and Female group respectively,
the red line represents depression group, the back line is non-depression group; the
second row is the cumulative hazard of time to depression by Male and Female group
respectively, the red line is CAD group and black line is Non-CAD group.
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and

θ(tCAD, tDP ;Gender = M) = θ0(tCAD, tDP ; I(Genderi = F ))·exp(I(Genderi = M)·β)

(2.31)

where I(Genderi = M)is an indicator function for male and θ0(t1, t2; I(Genderi = F ))

is the reference cross-ratio in females, i.e.

θ0(tCAD, tDP ; I(Genderi = F )) =
hDP (tDP |TCAD = tCAD, Gender = F )

hDP (tDP |TCAD > tCAD, Gender = F )

=
hCAD(tCAD|TDP = tDP , Gender = F )

hCAD(tCAD|TDP > tDP , Gender = F )
(2.32)

Where M indicate male and F indicate female.

Three estimation approaches were used in this data set. Results were presented

in Table 2.5. All three estimation approaches showed the estimated cross ratio larger

than 1 in the reference group indicating that women who had early onset of one disease

were more likely to have an onset of the other disease. The coefficient β for the gender

indicator variable in equation (2.31 ) was estimated to be greater than 0 suggesting

that the association between the two disease onsets is stronger in males than the

association in females, but this difference is not statistically significant. In order to

verify these results, we also conducted stratified analyzes by estimating constant cross

ratio in each gender group separately. In Table 2.5, θ̂F and θ̂M represent the cross

ratio estimation for each group. All three approaches still showed greater cross ratio

estimate in male participants than in female participants. However, only log-ratio

of the two nonparametric cross ratio estimates of male over the female was close to

the coefficient estimate produced using the nonparametric approach. Both parametric
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and two stage semiparametric estimates using the gender specific cross ratio estimates

have deviated from regression estimates β̂. This may be caused by an invalid Clayton

copula distribution assumption. Since nonparametric approach does not rely on any

parametric form, it is expected to be more robust to model misspecification.

Table 2.5: Estimates of Covariate Dependent Cross Ratio and Gender Effect in IIDP
Data

Regression Stratified

β̂(SE) θ̂ (SE) θ̂M (SE) θ̂F (SE) log
ˆθM
θ̂F

Clayton 0.428(0.05) 1.13(0.04) 1.535(0.14) 1.519(0.12) 0.0104

Two Stage 1.33(0.19) 1.21(0.20) 2.9(0.31) 2.55(0.28) 0.128

Nonparametric 0.828(0.09) 1.05(0.08) 2.42(0.14) 1.06(0.12) 0.827

SE: Standard Error.

2.7 Discussion

We considered covariate dependent cross ratios of bivariate survival times in order

to identify covariates that are associated with the co-occupance of two events. We

compared three estimation approaches for parameter estimation including a paramet-

ric copula approach, a two-stage semi-parametric pseudo-likelihood approach, and a

nonparametric pseudo-partial likelihood approach in simulation studies. The non-

parametric pseudo-partial likelihood approach proposed by Hu et al. (2011) is shown

to perform well under various censoring scenarios and it is also robust against model

misspecification.Hu (2011) The parametric copula and the two stage semi-parametric

approaches both relied on the correct specification of a joint survival distribution and

can produce biased results when such an assumption is violated.
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There are several limitations in our proposed setup of the covariate dependent

cross ratios. The first limitation is the assumption of a multiplicative covariate effect,

i.e., covariates’ effect on the cross ratio is multiplicative of the cross-ratio in the

reference group. The nonparametric pseudo-partial likelihood approach by Hu et al.

(2011) allows the cross ratio function to be modeled as a time-dependent function.

Thus, in our extension to allow covariates in the cross ratio set up, the cross ratio

function for the reference group can also be modeled as time-dependent. However,

our model setup requires that the effect of time be separated from the effect of the

covariates, analogous to the proportional hazard assumption. Additional research will

be needed for appropriate methods to verify these assumptions in data analyzes.

The second limitation is that our approach considered uninformative censor-

ing. In medical research, informative censoring is often encountered. Thus extending

the models for the cross ratio to competing risk or semi-competing risk models is nec-

essary. A number of authors have proposed estimation method under a competing

risk by modeling the ratio of concordant and discordant pairs (Bandeen-Roche and

Liang, 2002; Bandeen-Roche and Ning, 2008; Ning and Bandeen-Roche, 2014; Shih

and Albert, 2010) . This new approach offers a different way to model the association

between multiple survival times under informative censoring. It is not clear whether

the nonparametric approach of Hu et al. (2011) can be easily extended to accommo-

date competing risk or semi-competing risk and how such an extension compares to

the methods of Ning and Bandeen-Roche (2014). These additional interests can be

explored in future research.

It will be an interesting investigation to compare Lawless and Yilmaz (2011)’s

two stage semiparametric approach with Shih and Louis (1995)’s two stage semipara-
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metric approach. Compare to Shih and Louis (1995)’s approach, Lawless and Yilmaz

(2011) proposed to use likelihood (2.33)

LLawless =
∏
i

(
∂2C

∂t1∂t2
)δ1·δ2 · (−∂C

∂t1
)δ1·(1−δ2) · (−∂C

∂t2
)(1−δ1)·δ2 · C(1−δ1)·(1−δ2) (2.33)

Compare to Shih and Louis (1995)’s likelihood

LShil =
∏
i

(
∂2C

∂u∂v
)δ1·δ2 · (−∂C

∂u
)δ1·(1−δ2) · (−∂C

∂v
)(1−δ1)·δ2 · C(1−δ1)·(1−δ2) (2.34)

The difference is

LLawless = LShil ·
∏
i

[h1(t1) · S1(t1) · h2(t2) · S2(t2)]δ1·δ2 (2.35)

· [h1(t1) · S1(t1)]δ1·(1−δ2) · [h2(t2) · S2(t2)](1−δ1)·δ2

It would be meaningful to conducted a simulation study to investigate the difference

of those two approaches, especially in finding standard error.

In the data application part, we also considered to test the underline joint

survival for bivariate events, but it isn’t a trivial test and we hope we can address

the test of joint survival for bivariate events in the future work.Also more simulation

study could be conducted to investigate the sensitivity of three methodologies. In

our simulation, we consider true β = 0.5, conditional on baseline cross ratio α0 = 3 ,

which is positively correlated. Thus, it would be interested to conduct a simulation

study under negative association scenario. And in our simulation, we considered
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identical marginal, thus, it would be interested to conduct a study for non identical

marginal distribution.

In summary, we demonstrated that a nonparametric pseudo-partial likelihood

approach can be used to estimate covariates’ effect on cross-ratios between bivariate

survival outcomes. We have also shown that the proposed approach performed well

and is robust under model misspecification in simulation studies. Given the increasing

trends in medical research to study common pathways underlying multiple conditions,

the proposed methods can be readily applied to these data for the identification of

common risk factors in the association of two survival outcomes.
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Chapter 3

Frailty-based Semiparametric Models for Time to Event Data with

Semi-competing Risk

3.1 Abstract

Survival analysis of time to events data often encounters the situations of correlated

multiple events including the same type of event observed from siblings or multiple

events experienced by the same individual. In addition, survival analysis in biomedical

research can be further complicated by semi-competing risk when individuals at risk

of a particular disease die from other causes. Motivated from illness-death model, we

propose a frailty model based approach for survival outcomes with a semi-competing

risk to account for the dependence between disease progression time, survival time.

Two estimation approaches are proposed and compared. The first is a two-stage

semiparametric approach where the cumulative baseline hazard was first estimated by

a nonparametric method. Parameter estimation was then achieved by maximizing the

pseudo-likelihood functions. In the second approach, we propose to use a penalized

partial likelihood approach for parameter estimation and inference similar to the

concept of the Cox’s partial likelihood. Simulation studies are conducted to compare

the performances of these two approaches. The proposed model is applied to data

from a longitudinal study of an elderly population.
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3.2 Introduction

Semi-competing risk data, first proposed by Fine et al. (2001), refers to the situation in

which a terminal event censors a nonterminal event but not vice versa, thus violating

the uninformative censoring assumption for traditional survival data. Semi-competing

risk data are often encountered in biomedical research including studies of chronic

diseases in elderly cohorts and cancer or AIDS trials ( Putter et al. (2007) and Wang

(2003)).

In a semi-competing risk setting, the terminal and non-terminal events are of-

ten correlated and are both of interest. Survival method ignoring the semi-competing

risk may yield biased results due to the violation of the independent censoring assump-

tion. In order to handle the informative censoring, a copula approach has been used

to jointly model the terminal and the nonterminal events simultaneously(Ding et al.,

2009; Fine et al., 2001; Lakhal et al., 2008; Peng and Fine, 2007; Wang, 2003). Peng

and Fine (2007) proposed a regression model of semi-competing risks data with a novel

time-dependent copula using the proportional hazard model with time-varying coeffi-

cient as the marginal models. Lakhal et al. (2008) proposed to use the copula-graphic

estimator of Zheng and Klein (1995) for estimating the marginal survival functions

of the nonterminal event and use an Archimedean copula for the joint model of both

events. However, the applications of the copula model approach have been limited

due to model identification issues, the lack of model flexibility and the difficulty in

incorporating covariates.

In contrast to the copula approach, Xu et al. (2010) and Han et al. (2014)

proposed a frailty model framework for semi-competing risk data. Their general
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illness-death models differentiate three types of hazards: hazard of illness, hazard of

death without illness and hazard of death with illness. Covariates are incorporated

through proportional hazards modeling. In Xu et al. (2010), the two types of events

were linked by a gamma frailty and nonparametric maximum likelihood estimation

(NPMLE) was used for estimation. Han et al. (2014) proposed a Bayesian Markov

Chain Monte Carlo methods (MCMC) for model fitting and a frailty term with normal

distribution.

There is an extensive literature on parameter estimation for covariate effects

in frailty models, where the event times are assumed to be independent conditional

on unobserved frailty terms. The frailties are unobserved random variable assumed

to follow a probability distribution, the shape of which is described with a few pa-

rameters. In order to handle the additional information introduced by frailty term,

the EM algorithm has been widely used in this area. Klein (1992) proposed to use

the EM algorithm based on a profile likelihood construction. Since EM algorithm

is computational expensive, Cortinas Abrahantes and Burzykowski (2005) proposed

an alternative implementation of EM algorithm, in which the expected values were

computed with the use of Laplace approximation. McGilchrist and Aisbett (1991)

proposed a penalized partial likelihood approach in a Gaussian frailty model setting.

Following Breslow and Clayton (1993),Ripatti and Palmgren (2000) used the Laplace

approximation for the integrated likelihood. A comprehensive review of methodolo-

gies in handling frailty model can be find in Therneau and Grambsch (2000).

In this work, we followed the model framework in Xu et al. (2010) and Han

et al. (2014). However, instead of the nonparametric maximize likelihood approach

used in Xu et al. (2010) and the Bayesian Markov Chain Monte Carlo methods
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(MCMC) used in Han et al. (2014), we propose to use a penalized partial likeli-

hood(PPL) approach for parameter estimation and inferences. The penalized partial

likelihood theory has been addressed by Green (1987) in general semiparametric re-

gression frame work where he compared the performance of penalized approach to the

composite likelihood approach to show the stabilty and accuracy of the penalized ap-

proach by choosing the turning parameter λ using cross validation method. Therneau

and Grambsch (2000) showed an exact connection between the shared gamma frailty

model and a penalized likelihood procedure. Therneau et al. (2003) also mentioned

the closed linked to penalized models and illustrated that the fitting from frailty

models with penalized likelihoods can be made quite efficient by taking advantage of

computational methods available for penalized models.

In this paper, we demonstrate the advantage of penalized partial likelihood

approach on semi-competing risk data through simulation study and application ex-

ample. Compared to other modeling and estimating approaches, our semiparametric

model setup and PPL estimation approach have three advantages.

1. Modeling structure: our model dis-tangles the baseline hazard and covariates

in the same spirit as the Cox model. Modeling covariate effects using semipara-

metric additive function allows for both parametric and nonparametric covari-

ate effects, such as spline covariate, with extensions to multiple covariate and

time-varing covariate.

2. Parameter estimation: our approach connects the frailty model with the penal-

ized partial likelihood estimation, which is parallel to the connection between

mixed models with penalized least square estimation in Bates and DebRoy

(2004).
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3. Computation: our approach can be conducted in both SAS and R using current

packages respectively by formatting the data accordingly.

In the following sections, we present the notations and model setup in Section

2. We describe estimation approaches in Section 3 and results from a simulation study

in Section 4. We present results from the Indiana-Ibadan Dementia Project (IIDP)

data analysis in Section 5 and conclude the chapter with a discussion in Section 6.

3.3 Frailty Model in Competing Risk Data and Semi-competing Risk

Data

Frailty model provides a convenient way to introduce random effects, association and

unobserved heterogeneity into models for survival data. A frailty can be interpreted

as an unobserved random proportionality factor that modifies the hazard function

of an individual, or of related individuals. The term frailty itself was introduced by

Vaupel et al. (1979) in univariate survival models. The frailty model is defined in

terms of the conditional hazard

λij(t|ui) = λ0(t) · ui · exp(xTijβ)

with i ∈ I = {1, . . . , G} and j ∈ Ji = {1, . . . , ni}, where h0(·) is the baseline hazard

function, ui is the frailty term in group i, xij is the vector of covariates for subject j

in group i, and β is the vector of regression coefficients.

Normally, in most clinical applications, survival analysis implicitly assumes

a homogeneous population to be studied. This means that all individuals sampled

into that study are subjects under the same risk (e.g., risk of death, risk of disease
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recurrence). In many applications, the study population can not be assumed to be

homogeneous. The frailty approach is a statistical modeling concept which aims to

account for heterogeneity, caused by unmeasured covariates. Generally, frailty models

can be distinguished into two broad classes:

1. Models with an univariate survival time as the endpoint.

2. Models which describe multivariate survival endpoints (e.g; competing risks,

recurrence of events in the same individual, occurrence of a disease in relatives,

semi-competing risks).

In the first case, an univariate (independent) lifetime is used to describe the influ-

ence of unobserved covariates in a proportional hazards model (heterogeneity). The

variability of survival data is split into a part that depends on risk factors, and is

therefore theoretically predictable, and a part that is initially unpredictable, even

when all relevant information is known. A separation of these two sources of variabil-

ity has the advantage that heterogeneity can explain some unexpected results or give

an alternative interpretation of some results.

In the second case when multivariate survival times are considered, the aim

is to account for the dependence in clustered event times. A natural way to model

dependence of clustered event times is through the introduction of a cluster-specific

random effect - the frailty. This random effect explains the dependence in the sense

that had we known the frailty, the events would be independent. In other words, the

lifetimes are conditional independent, given the frailty. This approach can be used

for survival times of related individuals like family members or recurrent observations

on the same person.
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In this work, we focus on the second use of frailty model, to explain the de-

pendence in the illness and death on same subject. The examples and illustrations

of frailty model can be found in numerous literatures (Box-Steffensmeier et al., 2007;

Wienke, 2010). Gorfine and Hsu (2011) provided a new class of frailty-based com-

peting risks models for clustered failure times data. Especially, Liu et al. (2004); Xu

et al. (2010) proposed to use frailty model in semi-competing risk data, also known

as illness-death model. Xue et al. (2008) focused on the use of frailty model in aging

study with competing risk.

3.4 Model and Likelihood

Let T1 be the time to the non-terminal event (referred to as illness hereafter), T2 be

the time to the terminal event (referred to death hereafter). Let C be an external

censoring variable due to patient withdraw or the end of study. We observe the

variables X1 = T1 ∧ T2 ∧ C and X2 = T2 ∧ C. Let δ1 = I(T1 ≤ (T2 ∧ C)) and

δ2 = I(T2 ≤ C), where “∧ ”denotes the minimum and I(·) is the indicator function.

Note that T2 can censor T1 but not vice visa, whereas C can censor both T1 and T2.

In addition, a vector of covariate Z is observed. Furthermore, we assume that C is

independent of the joint distribution of T1 and T2 given Z. Let {(T1i, T2i, Ci), i =

1, . . . , n.} be independent and identically distributed (IID) replications of (T1, T2, C).

The observed data are IID replications of (X1, X2, δ1, δ2).

3.4.1 Models for Semi-competing Risks Data

Assume individuals begin in an initial healthy state (state 0) from which they may

transit to death (state 2) directly or may transit to an illness state (state 1) first
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and then to death (state 2) (Figure 3.1). As in Xu et al. (2010), the hazards can be

defined as:

Figure 3.1: Two events with a Semi-competing Risk

dΛ1(t1) = λ1(t1)dt1 = Pr(t1 ≤ T1 ≤ t1 + dt1|T1 ≥ t1, T2 ≥ t1), t1 > 0 (3.1)

dΛ2(t2) = λ2(t2)dt2 = Pr(t2 ≤ T2 ≤ t2 + dt2|T1 ≥ t2, T2 ≥ t2), t2 > 0 (3.2)

dΛ3(t2|t1) = λ3(t2|t1)dt2 = Pr(t2 ≤ T2 ≤ t2 + dt2|T1 = t1, T2 ≥ t2), t2 > t1 > 0 (3.3)

Equations (3.1) and (3.2) are the hazard functions for illness and death without illness,

which are the competing risk parts of the model. Equation (3.3) defines the hazard

for death following illness. In general, λ3(t2|t1) can depend on both t1 and t2. To

account for the dependency structure between T1 and T2, Xu et al. (2010) introduced

a single shared gamma frailty term, Han et al. (2014) extended the association model

using multivariate random effects as following:

λ1(t1|z1,b) = λ01(t1) · exp(XT
1 · β1 + zT1 · b), t1 > 0 (3.4)

λ2(t2|z,b) = λ02(t2) · exp(XT
2 · β2 + zT2 · b), t2 > 0 (3.5)

λ3(t2|t1, z,b) = λ03(t2|t1) · exp(XT
3 · β3 + zT3 · b), t2 > t1 > 0 (3.6)

49



where λ0i is the unspecified baseline hazard; βi is vectors of regression coefficients

associated with each hazard; the covariate Xi has p components and the covariates

zi, usually consists of 1 and a subset of covariates from Xi, is assumed to be associated

with random effect b = {b1, b2, . . . , bq}T . b represents random effects that account for

possible associations among the three hazards. We assume a normal distribution for

the random effects, b ∼MVN(0, D(ν)), with a full rank covariance matrix D(ν) and

ν is a vector of variance components. The zero mean constraint is imposed so that

the random effects represent deviations from population averages. Examples of the

choices of covariance structures for clusters, hierarchical and spatial survival data can

be found, e.g., in Breslow and Clayton (1993). Conditioning on the random effects b,

we assume that survival times Ti s is independent of censoring time Ci. We further

assume that the censoring times are independent of the random effects b, i = 1, 2, 3.

Model (3.4 3.5 3.6) allow multivariate random effects with arbitrary design

matrix in the log relative risk. In its simplest form, when z1 = z2 = z3 = 1 , the frailty

term z is reduced to a univariate random variable that accounts for the subject-specific

dependency of three types of hazards. The models in Xu et al. (2010) belong to this

simple case where they assume that exp(β) follows a gamma distribution. However,

in many cases, random effects based on covariates, e.g., clinical center or age, may

provide better models for the correlation structure. Then the terms z′1 · b, z′2 · b and

z′3 · b can be used to incorporate these random covariates. For example, clustered

semicompeting risks data frequently arises from oncology trials evaluating efficacies

of different treatments. A typical model for this type of data is to have both subject-

level and cluster-level frailty terms. (Gustafson, 1995, 1997) We assume a normal

distribution for the random effects. The zero mean constraint is imposed so that the
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random effects represent deviations from population averages. The covariance matrix

is assumed to be unconstrained.

Interests on the unknown quantities, β1, β2, β3,b,MV N(0, D(ν)), λ01, λ02, λ03

can depend on specific analysis. In clinical trial setting, effects of treatment and

prognostic factors, β1, β2, β3, are usually the focus of primary analysis. For genetic

data analysis the focus may be on MVN(0, D(ν)) which captures genetic variability.

The baseline hazards are usually treated as nuisance parameters but are needed for

the estimation and prediction of survival probabilities for individual subjects.

3.4.2 Likelihood

For a subject j, we observe (t1j, t2j, δ1i, δ2i, cj, zj). Using counting process, the three

patterns of the event can be represented as the following:

N1j(t) = I(t1j ≤ t, δ1j = 1)

N2j(t) = I(t2j ≤ t, δ1j = 0, δ2j = 1)

N3j(t) = I(t2j ≤ t, δ1j = 1, δ2j = 1).

Correspondingly, let the at risk process for the three types of events be repre-

sented as following:

R1j(t) = I(t1j ≥ t)

R2j(t) = I(t1j ≥ t, t2j ≥ t)

R3j(t) = I(t2j ≥ t > t1j).
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We further assume that the censoring time C is independent of X1, X2, given covariate

Z.

Given frailty, assuming conditional independence of the three events, for sub-

ject j, the likelihood is

Li|b = P (T1j = t1j,T2j = t2j)
δ1j ·δ2j × P (T1j = t1j, T2j ≥ t2j)

δ1j ·(1−δ2j) (3.7)

× P (T1j ≥ t1j, T2j = t2j)
(1−δ1j)·δ2j × P (T1j ≥ t1j, T2j ≥ t2j)

(1−δ1j)·(1−δ2j)

(3.8)

If conditionally on b the censoring is independent and non-informative also of b, let

θ = (β1, β2, β3)′ denote the parameter of interest, then the likelihood can be formed

as

Ln(θ) =

∫ ∏
j

Lj(θ|bj) · f(bj)dbj (3.9)

=

∫ ∏
j

Pr(T1j = t1j, T2j = t2j)
δ1jδ2j · Pr(T1j = t1j, T2j ≥ t2j)

δ1j(1−δ2j)

· Pr(T1j ≥ t1j, T2j = t2j)
(1−δ1j)δ2j · Pr(T1j ≥ t1j, T2j ≥ t2j)

(1−δ1j)(1−δ2j) · f(bj)dbj

According to the definition of hazard (3.1,3.2, 3.3), we have

λ3(t2|t1) = Pr(t2 ≤ T2 ≤ t2 + dt2|T1 = t1, T2 ≥ t2) =
P (T1 = t1, T2 = t2)

P (T1 = t1, T2 ≥ t2)
(3.10)

Then,

P (T1 = t1, T2 = t2) = λ3(t2|t1) · P (T1 = t1, T2 ≥ t2) (3.11)
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Similarly,

P (T1 ≥ t1, T2 = t2) = λ2(t2) · P (T1 ≥ t1, T2 ≥ t2) (3.12)

Since (T1 ≥ t1, T2 ≥ t2) can only happen if both events are censored, thus it is

equivalent to (T1 ≥ t1, T2 ≥ t1),

P (T1 ≥ t1, T2 ≥ t2) = P (T1 ≥ t1, T2 ≥ t1) = e−Λ1(t1)−Λ2(t1) (3.13)

P (T1 = t1, T2 ≥ t2) = λ1(t1) · e−Λ1(t1)−Λ2(t2)−Λ3(t2|t1)+Λ3(t1|t1) (3.14)

With some simplification and the assumption of conditional independence of

the hazard function given b, the likelihood can be written as:

Ln(θ) =

∫ ∏
j

λ1(t1j)
δ1j · S1(t1j)·λ2(t1j)

(1−δ1j)δ2j (3.15)

· S2(t1j) · [λ3(t2j)
δ2j · S3(t2j)

S3(t1j)
]δ1j · f(bj) · dbj

where θ = (β1, β2, β3)′ is the parameter of interest.
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By the definition of survival function and hazard function, the likelihood can

be written as

L{λ0, θ, ν} (3.16)

=

∫ ∏
j

λ1(t1j|Xj, zj,b)δ1j · exp{−Λ1(t1j|Xj, zj,b)}

· λ2(t2j|Xj, zj,b)(1−δ1j)δ2j · exp{−Λ2(t2j|Xj, zj,b)}

· λ3(t2j|Xj, zj,b)δ1j ·δ2j · exp{−δ1j[Λ3(t2j|Xj, zj,b)− Λ3(t1j|Xj, zj,b)]}

· f(b, D(ν))db

where λ0 = (λ01(t1), λ02(t2), λ03(t3))T , Λi(t) =
∫ t

0
λi(u)du, and Λ0 = (Λ01(t1),Λ02(t2),Λ03(t3))T .The

likelihood in (3.15) can also be consider a multi-state model.

With the proportional hazards assumptions and the use of counting process

notations, the corresponding likelihood can be rewritten as:

n∏
j=1

3∏
k=1

{
∏
t≥0

λkj(t|z,b)dNkj(t) · exp[−
∫ ∞
t=0

Rkj(t) · λkj(t|z,b)dt]} (3.17)

According to the definition in (3.4, 3.5, 3.6), the likelihood in (3.17), can be formed

up as:
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L =

∫ ∏
j

[λ01(t1j) · exp(xj · β1 + z′1j · bj)]δ1j · exp[−exp(xj · β1 + z′ · b) · Λ01(t1j)]

(3.18)

· [λ02(t2j) · exp(xj · β2 + z′2j · bj)](1−δ1j)·δ2jexp[−exp(xj · β2 + z′2j · bj) · Λ02(t2j)]

· [λ03(t2j) · exp(xj · β3 + z′3j · bj)]δ1j ·δ2j · exp[−δ1jexp(xj · β3 + z′3j · bj) · Λ03(t2j)] · f(b)db

3.5 Estimation Approaches

In this section,we introduced two estimation approaches to solve the parameter esti-

mation in model (3.4,3.5,3.6) and likelihood (3.15).

3.5.1 Two Stage Semiparametric Pseudo Likelihood Approach

The motivation for a two stage semiparametric pseudo likelihood was from to estimate

of baseline hazard, λ0. In Zeng and Lin (2007) and Han et al. (2014)’s work, the

baseline hazard λ0 has been treated as discrete function, or Λ0 as a step function,

with increments or jumps occurring at the corresponding observed distinct failure time

points. But a limitation of piecewise baseline hazard or cumulative hazard estimator

was that it will introduce more parameters into the estimation process, which will be

computational expensive and require the sample size to be substantial.

In order to ease the computational burden induced by baseline hazard and to

focus on parameters of interest, we propose two stage pseudo-likelihood estimation

approach. The two stage estimation methodology has been widely used in bivari-

ate and multivariate data analysis. The advantage of the two stage approach was
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computational efficiency. In order to avoid solving the joint likelihood for all pa-

rameters simultaneously, the two stage method decomposes the estimation into two

steps, which will reduce the computation cost. But the two stage method does have

it limitations. Since the two stage method was no longer using the joint likelihood,

thus, the estimator was no longer maximum likelihood estimator(MLE), so it can’t

inherit the asymptotic property of MLE. Thus, computing standard error could be

challenging.

In our case, the baseline hazards are estimated by the nonparametric Nelson-

Aalen estimates in the first stage denoted as Λ̂0.

̂Λ0i(tij) =

∫ tij

0

Nij(u)

Rij(u)
du, i = 1, 2, 3; j = 1, · · · , n. (3.19)

In the second stage, β1, β2, β3 are estimated by maximizing the pseudo-likelihood

function with estimates from the first stage into equation (3.15), as the following:

LPseudo(θ|Λ̂0) ∝
∫ ∏

i

[exp(z1i · β1 + bi)]
δ1iexp(− ̂Λ01(t1i)exp(z1i · β1 + bi))

·[exp(z2i · β1 + bi)]
(1−δ1i)δ2iexp(− ̂Λ02(t1i)exp(z2i · β2 + bi))

·{[exp(z3i · β3 + bi)]
δ2iexp(−[ ̂Λ03(t2i)− ̂Λ03(t1i)]exp(z2i · β3 + bi))}δ1i

(3.20)

· f(bi) · dbi

Let lPseudoθ (θ|Λ̂0) and Uθ(θ|Λ̂0) the score function of θ which is the derivative

of the log of the likelihood in (3.20), the two stage pseudo estimator θ̂ = (β̂1, β̂2, β̂3)T
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is the solution to the estimating equation:

Uθ(θ|Λ̂0) =
∑
j

∂lPseudoθ (θ|Λ̂0)

∂θ
(3.21)

Standard Error for the Two Stage Estimator

The variance of the Nelson-Aalen estimator is estimated by

σ̂2
i (tij) =

∫ tij

0

(Rij(u)−Nij(u))Nij(u)

(Rij(u)− 1)Rij(u)2
du

Expanding the score function Uθ(θ|Λ̂0) in a Taylor series around θ0 and eval-

uating it at θ = θ̂, we get

Uθ(θ̂|Λ̂0) = 0 (3.22)

= Uθ(θ0|Λ̂0)

+ (θ̂ − θ0)
∑
j

Vθ0(θ|Λ̂0) + op(n
1/2)

Where,

Vθ(θ|Λ̂0) =
∑
j

∂2lPseudoθ (θ|Λ̂0)

∂θ2
(3.23)

Since the first stage marginal estimation is embedded with in the pesudo like-

lihood (3.20), the second stage model contains variables constructed from parameters

estimated in the first stage. However, the covariance matrix of the second stage es-

timator includes noise induced by the first-stage estimates.To correct the standard

error from the first stage estimation, we followed Karaca-Mandic and Train (2003)’s

deduction. The final standard error estimator should be a sandwich estimator plus a
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correction term. But since this is not a trivial extension, we recommend the use of

bootstrap method to obtain standard error estimates. The method is demonstrated

as follows:

1. Draw bootstrap samples;

2. Run first-stage Nelson Aalen Estimates in (3.19).

3. Maximize the two stage pseudo partial likelihood in (3.20) and obtain parameter

estimates β̂1, β̂2 and β̂3

4. Repeat 1–3. Note that the two stage approach need to be performed on the

same bootstrap samples; and

5. Compute the standard errors from the sampling distribution of the estimates.

3.5.2 Penalized Partial Likelihood Estimation

We restrict b to follow a multivariate normal distribution. Under the proportional

mean model and the general additive frailty model setup, the likelihood for observed

data can be written as:

L{λ0, θ, ν} (3.24)

=
1

D(ν)1/2

∫ ∏
i

[λ01(t1i) · exp(XT
i · β1 + zTi · b)]δ1i · exp{−Λ01(t1i) · eX

T
i ·β1+zTi ·b}

· [λ02(t2i) · exp(XT
i · β2 + zTi · b)](1−δ1i)·δ2i · exp{−Λ02(t2i) · eX

T
i ·β2+zTi ·b}

· [λ03(t2i) · exp(XT
i · β3 + zTi · b)](1−δ1i)·δ2i · exp{−δ1i[Λ03(t2i)− Λ03(t1i)] · eX

T
i ·β3+zTi ·b}

· e−
1
2
bTD(ν)−1bdb

Since the integrated log likelihood (3.24) does not have a closed form expression,

following Breslow and Clayton (1993) and Ripatti and Palmgren (2000), we write
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(3.24) as
∫
exp{−S(b)}db, and apply the Laplace approximation to (3.24). Even

though we use multivariate normal distribution in this paper, the derived likelihood

approximations can be easily adapted to other frailty distributions as well. Profiling

out the baseline hazard in similar way to Appendix B of Ripatti and Palmgren (2000),

one can show that, given ν, the parametric regression coefficient θ can be obtained by

jointly maximizing following penalized partial likelihood (PPL) with respect to θ, ν,b.

We follow Breslow and Clayton (1993) in their approximation for the generalized

linear mixed model. Laplace’s method for integral approximation allows the marginal

log likelihood to be approximated by

l(θ,b, ν) = log(L(θ,b, ν)) ≈ −1

2
log |D(ν)| − 1

2
log |K ′′(b̃)| −K(b̃) (3.25)

where

K(b̃) = −[
n∑
i=1

δ1i[log(λ01(t)) +XT
j β1 + zib̃]− Λ01(t) exp(XT

i β1 + zib̃) (3.26)

+ (1− δ1i)δ2i[log(λ02(t)) +XT
j β2 + zib̃]− Λ02(t) exp(XT

i β2 + zib̃)]

+ δ1iδ2i[log(λ03(t)) +XT
j β3 + zib̃]− Λ03(t) exp(XT

i β3 + zib̃)

− 1

2
b̃′D(ν)−1b̃]
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The set of second partial derivatives of K(b) with respect to b is denoted K ′′(b) and

has the form

K ′′(b̃) =
n∑
i=1

Λ01(t) exp(XT
i β1 + zTi b̃)ziz

′
i + Λ02(t) exp(XT

i β2 + zTi b̃)ziz
′
i (3.27)

+ Λ03(t) exp(XT
i β3 + zTi b̃)ziz

′
i +D(ν)−1

This leads to the approximate marginal log likelihood

l(θ,b; ν) ≈
n∑
i=1

{δ1i[(X
T
i · β1 + zTi · b)− log

∑
j∈R(t1i)

eX
T
j ·β1+zTj b] (3.28)

+ (1− δ1i)δ2i[(X
T
i · β2 + zTi · b)− log

∑
j∈R(t2i|δ1i=0)

eX
T
j ·β2+zTj b]

+ δ1iδ2i[(X
T
i · β3 + zTi · b)− log

∑
j∈R(t2i|δ1i=1)

eX
T
j ·β3+zTj b]} − 1

2
bTD(ν)−1b

If both ν were known and b were considered a fixed effects parameter, then

(3.28) would be a penalized log likelihood (Green (1987)), where −1
2
bTD(ν)−1b is

the penalty term penalizing for extreme values of b.

For given ν, the estimating equations based on the first partial derivatives of

the PPL are following, for θ = (β1, β2, β3),

U1 =
n∑
i=1

δ1i[Xi −
Xi · exp(XT

i · β1 + zTi · b)∑
j∈R(t1i)

exp(XT
j · β1 + zTj · b)

] = 0 (3.29)

U2 =
n∑
i=1

(1− δ1i)δ2i[Xi −
Xi · exp(XT

i · β2 + zTi · b)∑
j∈R(t2i|δ1i=0) exp(X

T
j · β2 + zTj · b)

] = 0

U3 =
n∑
i=1

δ1iδ2i[Xi −
Xi · exp(XT

i · β3 + zTi · b)∑
j∈R(t2i|δ1i=1) exp(X

T
j · β3 + zTj · b)

] = 0
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For b,

Ub =
n∑
i=1

δ1i[zi −
zi · exp(XT

i · β1 + zTi · b)∑
j∈R(t1i)

exp(XT
j · β1 + zTj · b)

] (3.30)

+ (1− δ1i)δ2i[zi −
zi · exp(XT

i · β2 + zTi · b)∑
j∈R(t2i|δ1i=0) exp(X

T
j · β2 + zTj · b)

]

+
n∑
i=1

δ1iδ2i[zi −
zi · exp(XT

i · β3 + zTi · b)∑
j∈R(t2i|δ1i=1) exp(X

T
j · β3 + zTj · b)

]−D(ν)−1b = 0

The estimated standard error can be approximated by the inverse of the minus

second partial derivative matrix. The maximization of the approximate likelihood

(3.28) can be done using the Newton-Raphson technique.

Variance Component Estimation via Penalized Partial Likelihood

We assuming that the variance component ν are known. In practice, it need to be

estimated from the data. If we assign the maximized value (θ̂(ν), b̂(ν)) of the PPL

into (3.28), we get an approximate profile likelihood function for ν,

l̂(θ̂(ν), ν) ≈ −1

2
log |D(ν)| − 1

2
log |K ′′(b̂)| − 1

2
b̂′D(ν)−1b̂ (3.31)

where K ′′(b̂) is derived in (3.27), given θ = θ̂; b = b̂. Follow Ripatti and Palmgren

(2000)’s variance estimation procedure, we also use K ′′PPL(b̂) = ∂2PPL
∂b∂b′

instead of

K ′′(b̂), after differentiation and some simplification, en estimating equation for ν is

Uν =
1

2
[tr(D−1∂D

∂ν
) + tr(K ′′PPL(b̂)−1∂D

−1

∂ν
)− b̂′D−1∂D

∂ν
D−1b̂] = 0 (3.32)
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The corresponding fisher information matrix, derived by differentiating (3.31)

twice and taking the expectation with respect to β, is

J =
1

2
[tr(D−1∂D

∂ν
D−1∂D

∂ν
+D−1 ∂

2D

∂ν∂ν ′
) (3.33)

+ tr(K ′′PPL(b̂)−1∂D
−1

∂ν
K ′′PPL(b̂)−1∂D

−1

∂ν
−K ′′PPL(b̂)−1∂

2D−1

∂ν∂ν ′
)]

3.6 Simulations

In order to illustrate our methodology, we conducted the following simulation study.

The performance of the likelihood approximation is evaluated in the Two sets of

simulations: (i) a shared Gaussian frailty model with varying frailty variance; (ii)

a model misspecification scenario : the frailty term for simulated data follows log-

normal distribution but estimation is conducted using normal frailty. We compared

the performance of frailty model approach with the Cox model approach by treating

each event as independent event.

3.6.1 Simulation Setup

We generated data according to model (3.1, 3.2, 3.3) with the Weibull baseline hazard

function h(t) = λptp−1. Specifically, we choose λ = 1, p = 1 in our simulation. A

fixed covariate Z ∼ Uniform(0, 2) was used to all three events, with corresponding

coefficient βi = 1, i = 1, 2, 3. Random effect were incorporated using b ∼ N(0, σ2
b ) and

log b ∼ N(0, σ2
b ) .
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Denote the observed event time for illness and death as X1i and X2i, respec-

tively. The generation of semicompeting risks data based on illness-death models

consists of two steps.

1. In the first step, we simulate Scompeting(t) = U1i ∼ U(0, 1), Scompeting(t) is

the joint survival for event 1 and event 2 as competing risk, Scompeting(t) =

exp {−Λ1(t)− Λ2(t)}, where Λ1 and Λ2 denote the cumulative hazards for illness

and death without illness, receptively. T ∗1i is the solution for u1i = Scompeting(t).

In this stage, survival times are generated for either illness or death without

illness. This is the competing risk stage of semi-competing risk data.

2. In the second stage, we use a Bernoulli experiment to decide which event is

assigned at this time T ∗1i. we generate another random number U2i ∼ U(0, 1). If

u2i >
λ1(ti)

λ1(ti)+λ2(ti)
, T ∗1i is considered as death time. Otherwise, T ∗1i is illness time

and death time can be generated based on the following conditional probability:

S(T2i = ti + si|T1i = ti) = exp{−Λ3(ti + si)− Λ3(ti)}

where si is the additional survival time after illness and Λ3 is the cumulative

hazard for death after illness.

3.6.2 Simulation Results

Data for 1000 replications are generated with a total of n = 600 observations for each

replication. On average, from each simulated dataset, we observed 283 T1 events, 285

T2 events without the precedence of T1, and 265 T2 events with the precedence of

T1, respectively. The analyses were conducted using the Cox models, the two stage

pseudo likelihood model and the penalized partial likelihood(PPL).
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The results are summarized in Table (3.1). The average of estimates, the

model based standard error estimates (M.SE) the average values of the estimated

standard errors (E.SE), and coverage probabilities (CP) of the 95% intervals based

on model based standard error estimates. We can see that all three methods perform

well for regression parameters when there was small within subject variance, σ2
b = 0.1.

However, as the within subject variance increases, the naive Cox proportional haz-

ard estimation approach, which ignores the within subject correlation, provided very

bias estimates. Compare to the naive Cox model, the two stage pseudo likelihood

estimation approach provided much more accurate estimates, but the standard error

inflated as the variance of frailty increased. The penalized partial likelihood estima-

tion approach was more accurate and more robust in all three estimates. Table (3.2)

summarized the simulation results when frailty term was generated from log-normal

distribution, but we still assume the frailty term as normal distribution in the estima-

tion. As we can see from the results, the estimates show similar pattern as in Table

(3.1). The penalized partial likelihood estimation approach was more accurate and

more robust in all three estimates when the model is misspecified.

Figure(3.2) and Figure (3.3) summarized the simulation result in boxplots,

where the length of box represented the standard error of the estimates, and in the

histogram provided the empirical distribution of the estimates. The red dot line in

Figure(3.2) represented the true parameter values from simulation; The very left red

box represented Cox naive estimation approach; The middle green box represented

penalized partial likelihood estimation approach; The right blue box represented two

stage pseudo likelihood estimation approach. As we can observe that, as the variance

of frailty increase, the naive Cox estimation approach differs more from the true
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value; the two stage pseudo likelihood model performed better than the naive Cox

estimation approach, but the result was not stable; the penalized partial likelihood

model performed the best and provided the most robust result.
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Figure 3.2: Simulation Results for the Normal Frailty Scenario Presented in Box
Vixen Plot and Empirical Distribution Plot.The red dash line represents the true
parameter.
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Figure 3.3: Simulation Results for the Log-Normal Frailty Scenario Presented in Box
Vixen Plot and Empirical Distribution Plot.The red dash line represents the true
parameter.
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3.7 Data Application Example

In this section, we demonstrated the two proposed estimation approaches using elec-

tronic medical records data.

3.8 Indianapolis-Ibadan Dementia Project (IIDP) Cohort

Electronic medical records (EMR) capture enormous quantities of clinical data in-

cluding medical diagnosis, laboratory testing, medication dispensing information and

they have been increasingly used in many health systems around the country. The

availability of EMR data offers an unprecedented research opportunity for monitoring

disease development, progression and treatment.

We demonstrated our proposed method by using the electronic medical records

from Indianapolis-Ibadan Dementia Project (IIDP) cohort. The Indianapolis-Ibadan

Dementia Project is a longitudinal, prospective, community-based epidemiological

comparative study of rates and risk factors for dementia and Alzheimer disease in el-

derly African Americans living in Indianapolis, Indiana and Yoruba in Ibadan, Nige-

ria. Since 1992, the IIDP has enrolled a cohort of African Americans aged 65 or

older and followed the participants until 2011 with cognitive evaluation, clinical diag-

nosis and collection of risk factor information at regularly scheduled intervals every

2 to 3 years. This rich database was specifically designed to identify incident cases

of Alzheimer’s disease (AD), over a 20 year period (Gureje et al., 1995).These data

include medical diagnoses, clinical findings, diagnostic testing, procedures, and med-

ications. Electronic medical records data are available from all enrolled patients and

the information includes diagnosis of medical conditions, laboratory test measures
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and medications order and dispensing. The detail of data description can be found

in Campbell et al. (2010).

Our interest is to compare the risk of CAD between patients in different gender

groups. For patients with an incident CAD event, the date of diagnosis was used as

the event time; otherwise, the last outpatient clinic visit prior to December 31, 2010

was used as the right censoring time.

Table 3.3: Median Age at Events (Number of Cases, Incidence) By Gender

Event Total (N=4105) Female (N=2666) Male(N=1439)

CAD 81.76(1280, 31.18%) 82.33(855, 32.07%) 80.65(425, 29.53%)

Death 82.82(2593, 63.17%) 83.34(1568, 58.81%) 82.01(1025, 71.23%)

Table (3.3) summarized the demographic information of the study cohort. In

study population, 4105 subjects were free of CAD at baseline enrollment time, within

the total cohort, we have 1208 cases of CAD events and 2593 deaths. In CAD cases,

32.07% were female cases and 29.53% were male cases. In death cases, 58.81% were

female cases, 71.23% were male cases. The median age of event onset were earlier in

the male group, while females experienced later event time.

Figure (3.4) presented the time to event plot by gender, the red line represented

male group, the blue line represented female group. From Figure (3.4), we can observe

that the female group had later onset than male group in CAD, Death and death

conditional CAD.
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Figure 3.4: Survival plots of time to CAD, time to death, time to death in the CAD
group and time from CAD to death, by gender, the red line represented male group,
the blue line represented female group

3.9 Event Specific Hazard and Model Setup

We followed models (3.4,3.5,3.6) and define t1 as the time of CAD, t2 as the time of

death. The model have the following structure:
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λCAD(t1|z1,b) = λ0,CAD(t1) · exp(XT
1 · β1 + zT1 · b), t1 > 0 (3.34)

λDeathOnly(t2|z,b) = λ0,DeathOnly(t2) · exp(XT
2 · β2 + zT2 · b), t2 > 0 (3.35)

λDeathAfterCAD(t2|t1, z,b) = λ0,DeathAfterCAD(t2|t1) · exp(XT
3 · β3 + zT3 · b), t2 > t1 > 0

(3.36)

The estimation results were shown in Table (3.4). The native Cox proportional

hazard estimation approach, two stage pseudo likelihood estimation approach and

penalized partial likelihood approaches were used in IIDP data analysis. The naive

Cox estimation approach showed higher risk of CAD and death, also higher risk of

death conditional on history of CAD experience in male group. However, the two

stage pseudo likelihood approach and penalized partial likelihood approach showed

lower risk of death conditional on history of CAD in the male group.

Table 3.4: Data Application Result:Estimation of Gender Effect in Time to CAD
with Death as a Semi-competing Risk

Parameter Cox(Naive Independent) Two Stage Pseudo Penalized Partial

β1 (Health to CAD) 0.082∗ (0.059) 0.033(0.121) 0.067(0.167)

β2(Health to Death) 0.48∗(0.048) 0.597∗(0.126) 0.745∗(0.144)

β3 (CAD to Death) 0.26(0.071) −0.211∗(0.162) −0.621∗(0.197)

3.10 Conclusion

We proposed two frailty-based semiparametric models for analyzing survival times

with a semi-competing risk. Compared to independent Cox regression, the new model

setup takes the correlation between time to event of interest and informative censoring
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caused by semi-competing risk into consideration. Simulation studies demonstrate

adequate performance for both the two-stage and the penalized partial likelihood

methods. The later approach is more stable and robust. Our proposed method can

be applied to many studies on aging and clinical trials where deaths of the participants

may be related to disease outcomes.
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Chapter 4

Frailty-based Multi-event Semiparametric Models for Failure Time Data

with Semi-competing Risks

4.1 Abstract

In medical research, multi-event and multi-stage arises when a individual was at risk

of multiple disease, or a certain disease progressed in several state. It is crucial

to study the inner structure and dependence between multiple diseases or multiple

states. In this paper, we propose to use frailty based semparametric model, whereas

frailty models introduce random effects to account for unobserved risk factors, pos-

sibly shared by multiple diseases or multiple states. For the model estimation, we

developed and evaluated three approaches: parametric, two stage semiparametric es-

timation and penalized partial likelihood approach. Simulation studies, performed by

using an innovative method for generating dependent multi-state survival data, show

that penalized partial likelihood methods are very competitive to evaluate the effect

of covariates.

4.2 Introduction

Multi-event model is formulated that describes the pathway and linkage between the

multiple events happened in the same subject; a special case of multi-event model

is the multi-state model. Inherited from the feature of multiple event model which

describes the dependence structure and development of multiple events. Multi-state
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models are commonly used for describing the development or progression stage of

failure time for a certain disease.

Both multi-event situation and multi-state cases existed widely in medical

studies. In medicine, the multiple event situation arises when multiple diseases hap-

pened to the same subject; Multi-state can describe conditions like healthy, diseased,

diseased with complication and dead. A change of one event to the other event, or a

change of state is called a transition. This then corresponds to outbreak of disease,

occurrence of complication and death. It important to recognize the difference be-

tween an event (like disease, death) and a state (like recurrence of tumor, dead). The

multi-event and multi-state structure make it is possible to study the detail of medi-

cal history and progression of certain disease. The full statistical model specifies the

multi-event and multi-state structure and the form of the hazard function (intensity

function) for each possible transition.

In many epidemiological studies of the elderly population, it has been ob-

served that individuals at risk of one chronic condition tend to have increased risk of

other medical conditions with a substantial numbers having multiple chronic condi-

tions. Studying the co-occurrence of these conditions may identify common biological

pathways linking these disorders and ultimately lead to effective treatment and pre-

vention strategies. Another complication facing the studies in aging is death due to

other causes which can be indirectly related to the conditions under study through

genetic or environmental exposures related to the individual’s susceptibility to both

disease and death.

In chapter 3, we focused on illness-death model (with just two states:illnesses

and death), which represented in Figure (3.1). In this chapter, we focus on more
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general situation, which is a multi-event model for bivariate failure times with a

semi-competing risk, represented in Figure 4.1.

Figure 4.1: Two Non-terminal Events and a Terminal Event as Semi-competing Risk

The specific model technique we use to form the model is frailty model ap-

proach, whereas frailty models introduce random effects to account for unobserved

risk factors, possibly shared by multiple diseases or multiple states. The integration

of frailty and multi-event methodology was interesting to control for unobserved het-

erogeneity in the presence of complex event history structures, particularly appealing

in observational study and clinical trials applications.

In the present chapter we propose the incorporation of shared frailties in the

transition specific hazard function; then, we develop and evaluate parametric, two

stage semiparametric estimation and penalized partial likelihood approaches. Sim-

ulation studies, performed by using an innovative method for generating dependent

multi-state survival data, show that penalized partial likelihood methods are very

competitive to evaluate the effect of covariates.

The following sections were presented in the following order. In section 2,

we introduce notation and model setup; in section 3, we review and compare well
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established current methodologies; in section 4, we introduce our likelihood and model

structure; Section 5 is simulation study; Section 6 is real data application; Section 7

is conclusion and discussion.

4.3 Notation and Setup

Let C be an external censoring variable due to withdrawal of patients or the end

of study. T1 and T2 were the time to the non-terminal events, for example, disease

progression (refer to as illness hereafter), T3 was the time to terminal event (refer to

death hereafter). Xi, where i = 1, 2, 3, is the observation at time Ti, where i = 1, 2, 3.

δ1 = I(X1 = T1) = I(T1 < C)

δ2 = I(X2 = T2) = I(T2 < C)

δ3 = I(X3 = T3) = I(T3 < C)

where I(·) is the indicator function. Note that T3 can censor T1 or T2 but not vice

visa, whereas C can censor T1, T2 and T3. In addition, a vector of covariate xi is

observed. Furthermore, we assume that C is independent of joint distribution of T1,

T2 and T3 given Z. Let {(T1i, T2i, T3i, C), i = 1, . . . , n.} be independent and identically

distributed (IID) replications of (T1, T2, T3, C). The observed data are IID replications

of (X1, X2, X3, δ1, δ2, δ3).
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In order to better illustrate the semi-competing risk procedure, we introduce

nine more indicators:

δ4 = I(T1 < T2)

δ5 = I(T2 < T1)

where δ4 represents if non-terminal event 1 happened before non-terminal event 2; δ5

represents if non-terminal event 2 happened before non-terminal event 1.

4.4 Review of Current Multi-event and Multi-state Model

In this section, we review several commonly used multi-event and multi-state models.

First, we introduce parametric and semiparametric frailty models; Then, we introduce

Markov Models.

4.4.1 Parametric and Semiparametric Frailty Model

The inclusion of frailties into multi-state models can provide complex survival mod-

els accounting for dependence between grouped subjects as well as between times to

events of different types within the same group, some works addressing this prob-

lem have begun to appear in recent years in applied statistics, while investigation

of theoretical aspects is emerging. Bhattacharyya and Klein (2005), for instance,

considered progressive multi-state models with exponential baselines. They intro-

duced frailties correlated within subjects, obtained by summing independent gamma

random variables as suggested by Yashin et al. (1995) for correlated frailty models.

van Houwelingen and Putter (2011) critically discussed some aspects of more general
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multi-state models with dependent frailties within subjects, again. These models ac-

count for association between transition intensities of the same subject, while they

consider event times of different subjects as independent. So, these models are more

in the spirit of univariate frailty models, each subject having a different risk level due

to his own unobserved factors.

In such a context the larger the frailty variances, the higher the heterogeneity

between subjects and the dependence between event times of different types for each

subject. No clustering effect can be accounted for by this approach.

4.4.2 Multi-state Markov Model

One model structure was commonly used in multi-event and multi-state situation

is Markov Model, which consider the progression of certain disease as a stochastic

process. Review paper on Markov models can be found in Andersen et al. (1985);

Cox and Miller (1965); Hoem et al. (1976); Hougaard (1999); Jackson (2016).

In multi-state Markov Model, the state structure is not unique. Choosing the

best structure can make the model assumptions more transparent, and simplify some

calculations. It is a clear advantage if the model is Markov, because this allows for

an intuitive graphical understanding of the model. One property that can be seen in

the state structure is whether the process is progressive. This is defined as each state

having only a single possible transition into it, and the initial state having no entries.

Thus the state at time t determines which states have been visited previously and in

which order.

Compared to the frailty model approach, which was more focused on covari-

ate effect, the multi-state Markov model is focused on the transition of one state
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to the other state, the specific statistics in Markov model is called the transitional

probability. The transitional probability evaluated at time v defined as

Pl(v, t) = Pr(Xt = l|Xu, u ∈ [0, v]) (4.1)

Where, Xt, t ∈ [0,∞) is a stochastic process, which is a right continuous piecewise

constant process, with limits from the left. Xt = l, means if the process is in state l at

time t.By the word history (or the past) at time t, we mean the information contained

in the development of the process over the time interval [0, t]. That is, Xs, 0 ≤ s ≤ t.

pl(v, t) are conditional on the whole development up to time v. This expression is only

considered for t ≥ v, as it is trivial otherwise. This is the probability of the process

X being in state l at time t given the development up to time v. The transition

probabilities can be found from the specified transition hazards.

4.5 Model and Likelihood

In this part, we will introduce the definition of path specific hazard with a frailty

term. The path for each subject is illustrated by Figure 4.1

4.5.1 Path Specific Hazard with Frailty Setup

The hazard for each translation states are defined as follows:

λi(t) = λ0i(t) · exp(xTi · βi + zTi · b), (4.2)
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where λ0i is the unspecified baseline hazard; βi is vectors of regression coefficients

associated with each hazard; xi is a vector of covariates, zi usually consists of 1

and a subset of covariates from xi; and b represents random effects that account for

possible associations among the three hazards. We assume a normal distribution for

the random effects, b ∼ N(0,Σ). The zero mean constraint is imposed so that the

random effects represent deviations from population averages. The covariance matrix

Σ is assumed to be unstructured.

For the first state, where three events are competing risks: i = 1, 2, 3 represents

non-terminal event 1, non-terminal event 2 and terminal event respectively. For the

second state where terminal event is the semi-competing risk, i = 4, 5 represent

from non-terminal event 1 to non-terminal event 2 and from non-terminal event 1

to terminal event, respectively; i = 6, 7 represent from non-terminal event 2 to non-

terminal event 1 and from non-terminal event 2 to terminal event, respectively. For

the third state where only the terminal event can happen, i = 8, 9 represent path from

non-terminal event 1 to non-terminal event 2 then to terminal event and path from

non-terminal event 2 to non-terminal event 1 then to terminal event, respectively.

Figure 4.2 listed the detail of hazard definition.

4.5.2 Likelihood

Based on the path specific hazard definition, there are 5 feasible pathes for each

subject, Figure (4.3) showed the detail of the event combination and event indicator

combination for each feasible path.

Thus, the likelihood can be formed by each feasible path:
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• Path 1 : Health → Non-terminal event 1 → Non-terminal event 2 → Terminal

event.

λ1(t1)δ1 · S1(t1) · [λ4(t2)δ2 · S4(t2)

S4(t1)
]δ1·δ4 · [λ6(t3)δ3 · S6(t3)

S6(t2)
]δ1·δ2·δ4

• Path 2 : Health → Non-terminal event 1 → Terminal event.

λ1(t1)δ1 · S1(t1) · [λ5(t3)δ3 · S5(t3)

S5(t1)
]δ1·δ4

• Path 3 : Health → Terminal event.

λ3(t3)δ3 · S3(t3)

• Path 4 : Health → Non-terminal event 2 → Terminal event.

λ2(t2)δ2 · S2(t2) · [λ8(t3)δ3 · S8(t3)

S8(t2)
]δ2·δ5

• Path 5: Health → Non-terminal event 2 → Non-terminal event 1 →Terminal

event.

λ2(t2)δ2 · S2(t2) · [λ7(t1)δ1 · S7(t1)

S7(t2)
]δ2·δ5 · [λ9(t3)δ3 · S9(t3)

S9(t1)
]δ1·δ2·δ5

In the mean time, the model can be built follow in the multi-state model idea.

Figure (4.4) showed the detailed structure for the multi-state model procedure.

The likelihood is formed up by three states:

83



• State 1: At state 1, three events are competing,non-terminal event 1,2 and

terminal event. If terminal event happened in this state, the whole procedure

will stop in this state. If non-terminal event 1 or 2 happened in this state, the

procedure will continue to state 2.

λ1(t1)δ1 · S1(t1) · λ2(t2)δ2 · S2(t2) · λ3(t3)δ3 · S3(t3) (4.3)

• State 2: At state 2, non-terminal event and terminal event are semi-competing,

if non-terminal event 1 happened at state 1, then at state 2, non-terminal event

2 and terminal event are semi-competing; if non-terminal event 2 happened

at state 1, then at state 2, non-terminal event 1 and terminal event are semi-

competing. If terminal event happend in this state, the whole procedure of

illness proceeding will stop there. If non-terminal event 1 or 2 happened in this

state, the procedure will continue to state 3.

[λ4(t2)δ2 ·λ4(t2)

λ4(t1)
·λ5(t3)δ3 ·S5(t3)

S5(t1)
]δ1·δ4 ·[λ7(t1)δ1 ·S7(t1)

S7(t2)
·λ8(t3)δ3 ·S8(t3)

S8(t2)
]δ2·δ5 (4.4)

• State 3: State 3 is the final state, the only possible event at state 3 is terminal

event, there are two sources for state 3’s terminal event, which depends on the

semi-competing result from state 2.

[λ6(t3)δ3 · S6(t3)

S6(t2)
]δ1·δ2·δ4 · [λ9(t3)δ3 · S9(t3)

S9(t1)
]δ1·δ2·δ5 (4.5)

The two likelihood procedures lead to the same likelihood equation, the final

likelihood is the product of each likelihood from each feasible path, also can be viewed
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as the product of each likelihood come from each state. Regardless of the random

effect, likelihood for each subject is as following.

λ1(t1)δ1 · S1(t1) · λ2(t2)δ2 · S2(t2) · λ3(t3)δ3 · S3(t3) (4.6)

· [λ4(t2)δ2 · S4(t2)

S4(t1)
· λ5(t3)δ3 · S5(t3)

S5(t1)
]δ1·δ4·

[λ7(t1)δ1 · S7(t1)

S7(t2)
· λ8(t3)δ3 · S8(t3)

S8(t2)
]δ2·δ5 · [λ6(t3)δ3 · S6(t3)

S6(t2)
]δ1·δ2·δ4

· [λ9(t3)δ3 · S9(t3)

S9(t1)
]δ1·δ2·δ5

Denote Λ(t) =
∫ t

0
λ(u)du and b ∼ fτ (b), where fτ (b) is the density function for

the frailty term b. And ~β = (β1, β2, · · · , β9). The likelihood function is
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L(~β) =

∫
b

∏
i

[λ01(t1) · exp (xT1i · β1 + zTi · b̃)]δ1 · exp [−Λ01(t1) · exp (xT1i · β1 + zTi · b̃)]

(4.7)

· [λ02(t2) · exp (xT2i · β2 + zTi · b̃)]δ2 · exp [−Λ02(t2) · exp (xT2i · β2 + zTi · b̃)]

· [λ03(t3) · exp (xT3i · β3 + zTi · b̃)]δ3 · exp [−Λ03(t3) · exp (xT3i · β3 + zTi · b̃)]

· {[λ04(t2) · exp (xT4i · β4 + zTi · b̃)]δ2

· exp [−(Λ04(t2)− Λ04(t1)) · exp (xT4i · β4 + zTi · b̃)]

· [λ05(t3) · exp (xT5i · β5 + zTi · b̃)]δ3

· exp [−(Λ05(t3)− Λ05(t1)) · exp (xT5i · β5 + zTi · b̃)]}δ1·δ4

· {[λ07(t1) · exp (xT7i · β7 + zTi · b̃)]δ1

· exp [−(Λ07(t1)− Λ07(t2)) · exp (xT7i · β7 + zTi · b̃)]

· [λ08(t3) · exp (xT8i · β8 + zTi · b̃)]δ3

· exp [−(Λ08(t3)− Λ08(t2)) · exp (xT8i · β8 + zTi · b̃)]}δ1·δ5

· {[λ06(t3) · exp (xT6i · β6 + zTi · b̃)]δ3

· exp [−(Λ06(t3)− Λ07(t2)) · exp (xT6i · β6 + zTi · b̃)]}δ1·δ2·δ4

· {[λ09(t3) · exp (xT9i · β9 + zTi · b̃)]δ3

· exp [−(Λ09(t3)− Λ09(t1)) · exp (xT9i · β9 + zTi · b̃)]}δ1·δ2·δ5

· fτ (b)db
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Figure 4.2: Hazard by Each Pathway with Frailty Model Setup in Bivariate Time to
Events Data with Semi-competing Risk
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Figure 4.3: The Summarization of Possible Pathway in Bivariate Time to Events
Data with a Semi-competing Risk

Figure 4.4: The Multi-state Flow Chart to Composite Joint Likelihood for Bivariate
Time to Events with a Semi-competing Risk
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4.6 Estimation

4.6.1 Two Stage Pseudo-Likelihood Approach

In the two-stage pseudo likelihood estimation approach, the baseline cumulative haz-

ards A0i(t) where i = 1 . . . 9, are estimated by nonparametric Nelson-Aalen estimates

in the first stage. Given the estimated Â0i, the parameter of interest β1, . . . , β9 is

estimated in the second stage by maximizing the pseudo likelihood function after

plug-in the estimates from the first stage into equation (4.7) .

First Stage: Estimating Baseline Cumulative Hazard

A non-parametric estimtor of cumulative hazard Λ0i(t) was first suggested by Wayne

Nelson (Nelson, 1969, 1972,add ref) as a graphical tool to obtain engineering infor-

mation on the form of the survival distribution in reliability studies.

Figure 4.5: The Transition Plot for Component for Nelson-Aalen Estimator in Multi-
state Model From State i to State j
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For time to event T , the counting process Ni(t) represents whether or not the

event has happended by or at t for the cause of i:

Ni(t) = I(T ≤ t)

The at risk counting process is Y (t) represents if the subject is at risk or not at time

t,

Y (t) = I(T ≥ t)

Note that for uncensored individual, we have

Y (t) = 1−
∑
i

Ni(t−)

According to the above definition, the Nelson-Aalen estimator for multi-state model

can be written as

Λ̂i(t) =

∫ t

0

dNi(u)

Y (u)
du
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Second Stage: Pseudo Likelihood

By plugging in the Nelson-Aalen estimator from the first stage, we have the pseudo

likelihood proportional to the equation in (4.8).

L(~β|Λ̂0) ∝
∫
b

∏
i

exp (xT1i · β1 + zTi · b)
δ1 · exp [−Λ̂01(t1) · exp (xT1i · β1 + zTi · b)] (4.8)

· exp (xT2i · β2 + zTi · b)
δ2 · exp [−Λ̂02(t2) · exp (xT2i · β2 + zTi · b)]

· exp (xT3i · β3 + zTi · b)
δ3 · exp [−Λ̂03(t3) · exp (xT3i · β3 + zTi · b)]

· {exp (xT4i · β4 + zTi · b)
δ2 · exp [−Λ̂04(t2) · exp (xT4i · β4 + zTi · b)]

· exp (xT5i · β5 + zTi · b)
δ3 · exp [−Λ̂05(t3) · exp (xT5i · β5 + zTi · b)]}δ1·δ4

· {exp (xT7i · β7 + zTi · b)
δ1 · exp [−Λ̂07(t1) · exp (xT7i · β7 + zTi · b)]

· exp (xT8i · β8 + zTi · b)
δ3 · exp [−Λ̂08(t3) · exp (xT8i · β8 + zTi · b)]}δ1·δ5

· {exp (xT6i · β6 + zTi · b)
δ3 · exp [−Λ̂06(t3) · exp (xT6i · β6 + zTi · b)]}δ1·δ2·δ4

· {exp (xT9i · β9 + zTi · b)
δ3 · exp [−Λ̂09(t3) · exp (xT9i · β9 + zTi · b)]}δ1·δ2·δ5

· fτ (b)db

Where Λ̂0 = (Λ01(t1), . . . ,Λ09(t3))′

The parameter of interest can be estimated by maximizing pseudo partial

likelihood in (4.8). The standard errors can be estimated using the bootstrap method.

4.6.2 Penalized Partial Likelihood Approach

In this part, we are using penalized partial likelihood following Breslow and Clayton

(1993) and Ripatti and Palmgren (2000), by apply the laplace approximation to the

log-likelihood.
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We assume that frailty term to follow a multivariate normal distribution, under

proportional mean model and the general additive fraity model setup, the likelihood

for observation data can be written as:

L(~β) =
1

D(τ)1/2

∫
b

∏
i

[λ01(t1) · exp (xT1i · β1 + zTi · b)]δ1 (4.9)

· exp [−Λ01(t1) · exp (xT1i · β1 + zTi · b)]

· [λ02(t2) · exp (xT2i · β2 + zTi · b)]δ2 · exp [−Λ02(t2) · exp (xT2i · β2 + zTi · b)]

· [λ03(t3) · exp (xT3i · β3 + zTi · b)]δ3 · exp [−Λ03(t3) · exp (xT3i · β3 + zTi · b)]

· {[λ04(t2) · exp (xT4i · β4 + zTi · b)]δ2

· exp [−(Λ04(t2)− Λ04(t1)) · exp (xT4i · β4 + zTi · b)]

· [λ05(t3) · exp (xT5i · β5 + zTi · b)]δ3

· exp [−(Λ05(t3)− Λ05(t1)) · exp (xT5i · β5 + zTi · b)]}δ1·δ4

· {[λ07(t1) · exp (xT7i · β7 + zTi · b)]δ1

· exp [−(Λ07(t1)− Λ07(t2)) · exp (xT7i · β7 + zTi · b)]

· [λ08(t3) · exp (xT8i · β8 + zTi · b)]δ3

· exp [−(Λ08(t3)− Λ08(t2)) · exp (xT8i · β8 + zTi · b)]}δ1·δ5

· {[λ06(t3) · exp (xT6i · β6 + zTi · b)]δ3

· exp [−(Λ06(t3)− Λ07(t2)) · exp (xT6i · β6 + zTi · b)]}δ1·δ2·δ4

· {[λ09(t3) · exp (xT9i · β9 + zTi · b̃)]δ3

· exp [−(Λ09(t3)− Λ09(t1)) · exp (xT9i · β9 + zTi · b)]}δ1·δ2·δ5

· e−
1
2
bTD(v)−1bdb
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Since the intergrated log-likelihood (4.9) does not have a closed form expres-

sion. We write (4.9) as
∫

exp (−S(b))db and apply the Laplace approximation.

l(~β, b̃; ν) ≈
n∑
i=1

{δ1i[(x
T
1i · β1 + zTi · b̃)− log

∑
j∈R1

exp (xT1i · β1 + zTi · b̃)] (4.10)

+ δ2i[(x
T
2i · β2 + zTi · b̃)− log

∑
j∈R2

exp (xT2i · β2 + zTi · b̃)]

+ (1− δ1i) · (1− δ2i) · δi3[(xT3i · β3 + zTi · b̃)− log
∑
j∈R3

exp (xT1i · β1 + zTi · b̃)]

+ δ1i · δ4i · δ2i[(x
T
4i · β4 + zTi · b̃)− log

∑
j∈R4

exp (xT4i · β4 + zTi · b̃)]

+ δ1i · δ4i · δ3i[(x
T
5i · β5 + zTi · b̃)− log

∑
j∈R5

exp (xT5i · β5 + zTi · b̃)]

+ δ2i · δ5i · δ1i[(x
T
7i · β7 + zTi · b̃)− log

∑
j∈R7

exp (xT7i · β7 + zTi · b̃)]

+ δ2i · δ5i · δ3i[(x
T
8i · β8 + zTi · b̃)− log

∑
j∈R8

exp (xT8i · β8 + zTi · b̃)]

+ δ1i · δ2i · δ4i · δ3i[(x
T
6i · β6 + zTi · b̃)− log

∑
j∈R6

exp (xT6i · β6 + zTi · b̃)]

+ δ1i · δ2i · δ5i · δ3i[(x
T
9i · β9 + zTi · b̃)− log

∑
j∈R9

exp (xT9i · β9 + zTi · b̃)]}

− 1

2
b̃TD(τ)−1b̃

The above partial likelihood part in above penalized partial likelihood, also

can be viewed as multi-state model procedure.
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• State 1: At time T1 three events are competing, illness 1 and 2 and death

[
h01(t1i)exp(zi · β1 + z̃i · b̃)∑

j∈R1(t1i)
h01(t1i)exp(zj · β1 + z̃j · b̃)

]δ1i · [ h02(t2i)exp(zi · β2 + z̃i · b̃)∑
j∈R2(t1i)

h02(t2i)exp(zj · β2 + z̃j · b̃)
]δ2i

· [ h03(t2i)exp(zi · β3 + z̃i · b̃)∑
j∈R3(t1i)

h03(t2i)exp(zj · β3 + z̃j · b̃)
]δ3i (4.11)

where R1, R2, R3 are at risk sets, which are defined as:

R1(t1i) = {j : t1j ≥ t1i} (4.12)

R2(t2i) = {j : t2j ≥ t2i} (4.13)

R3(t2i) = {j : t3j ≥ t3i} (4.14)

• State 2: at time T2 two events are competing, if illness 1 happened at state 1,

then at T2 illness 2 and death are competing; if illness 3 happened at state 1,

then at T2 illness 1 and death are competing. If illness 1 happened before illness

2, then δ4 = 1; If illness 2 happened before illness 1, then δ5 = 1.

{[ h05(t2i)exp(zi · β4 + z̃i · b̃)∑
j∈R4(t2i)

h04(t2i)exp(zj · β4 + z̃j · b̃)
]δ2i (4.15)

· [ h05(t3i)exp(zi · β5 + z̃i · b̃)∑
j∈R5(t3i)

h05(t3i)exp(zj · β5 + z̃j · b̃)
]δ3i}δ1iδ4i

{[ h06(t1i)exp(zi · β6 + z̃i · b̃)∑
j∈R6(t1i)

h06(t1i)exp(zj · β6 + z̃j · b̃)
]δ1i (4.16)

· [ h07(t3i)exp(zi · β7 + z̃i · b̃)∑
j∈R7(t3i)

h07(t3i)exp(zj · β7 + z̃j · b̃)
]δ3i}δ2iδ5i
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where

R12(t2i) = {j : δ1j · δ4j = 1, t2j ≥ t2i} (4.17)

R13(t3i) = {j : δ1j · δ4j = 1, t3j ≥ t3i} (4.18)

R21(t1i) = {j : δ2j · δ5j = 1, t1j ≥ t1i} (4.19)

R23(t3i) = {j : δ2j · δ5j = 1, t3j ≥ t3i} (4.20)

• State 3: this is the final state, the only possible event at T3 is death, there are

two sources for state 3 death, one is from illness 1 to 2, the other is from illness

2 to 1

{[ h08(t3i)exp(zi · β8 + z̃i · b̃)∑
j∈R8(t1i)

h08(t3i)exp(zj · β8 + z̃j · b̃)
]δ3i}δ1iδ4iδ2i (4.21)

· {[ h09(t3i)exp(zi · β9 + z̃i · b̃)∑
j∈R9(t3i)

h09(t3i)exp(zj · β9 + z̃j · b̃)
]δ3i}δ2iδ5iδ1i (4.22)

4.7 Simulation Study

We presented here a simulation study to investigate how the incorporation of shared

frailties into multi-state models can improve parameter estimation. Simulation studies

were conducted to compare the different estimation approaches and evaluate the

performance of each estimation method under various scenarios.

4.7.1 Data Preparation

Denote the observed event time for illness 1, illness 2 and death as T1i, T2i, T3i, re-

spectively. The generation of semi-competing risks data based on bivariate time to
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events consisted of five steps. Figure (4.6) summarized the procedure for the data

simulation.

In the first step, survival times are generated for illness 1, illness 2, on death

without illness. This stage is the competing component of semi-competing risks data.

The survival function for competing stage can be defined as

S1∧2∧3 = exp[−Λ1(t)− Λ2(t)− Λ3(t)]

Where Λ1(t),Λ2(t), and Λ3(t) denote the cumulative hazards for illness 1, illness 2

and death before illnesses, respectively. T ?1 is the solution for

S1∧2∧3 = u1i

Where u1i ∼ U(0, 1).Then, we use a trinominal experiment to decide the cause of

failure of T ∗1 . Generate another uniform distribution random variable u2i ∼ U(0, 1).

Let 

δ1 = 1, if u2i ≤ λ1(t)
λ1(t)+λ2(t)+λ3(t)

.

δ2 = 1, if λ1(t)
λ1(t)+λ2(t)+λ3(t)

< u2i ≤ λ1(t)+λ2(t)
λ1(t)+λ2(t)+λ3(t)

.

δ3 = 1, if λ1(t)+λ2(t)
λ1(t)+λ2(t)+λ3(t)

< u2i

(4.23)

In the second step, based on the type of failure from state 1, the data will end

in one of the following cases.
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1. Case 1: if δ3 = 1, then death happened before any illnesses, so we have

T1 = T ?1 , δ1 = 0

T2 = T ?1 , δ2 = 0

T3 = T ?1 , δ3 = I(T3 < C)

where C is universal censoring time.

2. Case 2:

• If δ1 = 1, then simulate T ?2 for two competing risk, which is conditional

on the history of illness 1, the illness 2 and death before illness 2 are

competing. Generate another uniform random variable u3i ∼ U(0, 1)

u3i = exp(− Λ4(t)

Λ4(t?1)
− Λ5(t)

Λ5(t?1)
) (4.24)

then use binorminal experiment to decide the cause of failure for T ?2 . Gen-

erate another uniform random variable u4i ∼ U(0, 1)


δ2 = 1, if u4i ≤ Λ4(t)

Λ4(t)+Λ5(t)
.

δ3 = 1, otherwise

(4.25)
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• If δ3 = 1, it means death happened before illness 2 but after illness 1, so

we have

T1 = T ?1 , δ1 = 1

T2 = T ?2 , δ2 = 0

T3 = T ?2 , δ3 = I(T3 < C)

• If δ2 = 1, it means death can only happen after illness 2, generate T ?3 .Generate

another uniform random variable u5i ∼ U(0, 1)

u5i = exp(−Λ6(t?3) + Λ6(t?2)) (4.26)

then, we have

T1 = T ?1 , δ1 = 1

T2 = T ?2 , δ2 = 1

T3 = T ?3 , δ3 = I(T3 < C)

3. Case 3:

• If δ2 = 1, then simulate T ?4 by two competing risks.Generate another uni-

form random variable u6i ∼ U(0, 1)

u6i = exp(− Λ7(t)

Λ7(t?1)
− Λ7(t)

Λ7(t?1)
) (4.27)
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then use binorminal experiment to decide the failure type,Generate another

uniform random variable u7i ∼ U(0, 1)


δ1 = 1, if u7i ≤ Λ8(t)

Λ8(t)+Λ8(t)
.

δ3 = 1, otherwise

(4.28)

• if δ3 = 1, it means death happened before illness 1 but after illness 2, so

we have

T1 = T ?4 , δ1 = 0

T2 = T ?1 , δ2 = 1

T3 = T ?4 , δ3 = I(T3 < C)

• if δ1 = 1, it means death only can happen after illness 1, generate T ?5 .

Generate another uniform random variable u8i ∼ U(0, 1)

u8i = exp(−Λ9(t?5) + Λ9(t?4)) (4.29)

then, we have

T1 = T ?4 , δ1 = 1

T2 = T ?1 , δ2 = 1

T3 = T ?5 , δ3 = I(T3 < C)
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Figure 4.6: Data Preparation Flaw Chart for Simulation Study: Generating Bivariate
Time to Events Data with a Semi-competing Risk

4.7.2 Simulation Results

For simulation and parameter estimations, we report in Table (4.1, 4.2), the aver-

age relative biase of the estimates(R.Bias), the average model based standard error

estimates(M.SE), the empirical standard error estimates(E.SE) and coverage proba-

bilities (M.CP) based on 95% the model based standard error estimates intervals.

We evaluated parameter estimation for the naive Cox model approach, para-

metric with exponential distribution as baseline hazard, two stage pseudo likelihood

and penalized partial likelihood approach. Data for 1000 replications are generated

with a total of n = 100, 200 observations for each replication. On average, from each

simulated dataset, we observed 28.95% T1 events, 31.87% T2 events, 34% T3 events
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without T1 and T2 event, 18% T3 event with T1 only, 16% T3 event with T2 event only;

32% of T3 event with both T1 and T2 events, respectively.

The analyses were conducted using the Cox models, the two stage pseudo

likelihood model and the penalized partial likelihood(PPL). We can see that the

all the methods perform well for regression parameter when there was small within

subject variance, σ2
b = 0.1. However, as the within subject variance increase, the

naive Cox proportional hazard estimation approach, which ignore the within subject

correlation, provided very biased estimates. Compared to naive cox model, the two

stage pseudo likelihood model provided much accurate estimator, but the standard

error inflated as the variance of frailty increased. Compare to parametric model, the

two stage estimate are more biased, since the method introduce more randomness from

the first stage. If the baseline model is correctly specified, we expected the parametric

model perform better than two stage estimate. On the other hand, when we can’t

have enough information for the baseline hazard, under model misspecification, we

expects the two stage estimates perform better than parametric estimates.

Compare the simulation results summarized in Table (4.2)) in which simulation

scenario n = 200 has larger sample size than Table (4.1)) scenario n = 100. We can

see the significant improvement in the penalized partial likelihood estimates due to

sample size increase.

Compared to the other three model estimates, the penalized partial likelihood

estimator was more accurate and more robust in all the scenario. Thus, we recommend

penalized partial likelihood method in applications.
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4.8 Application

To illustrate the penalized partial likelihood estimation approaches in bivariate time

to events with a semi-competing risk, we present a data analysis exploring potential

gender differences in the association between time to coronary artery disease (CAD)

and time to depression using data from the Indianapolis-Ibadan Dementia Project

(IIDP). The detail of date description can be found in section 2.5.

For our analysis, the study population consisted of African American par-

ticipants of the IIDP. All were age 65 or older residing in Indianapolis, Indiana.

Recruitment was conducted at two-time points. During the first recruitment in 1992,

2212 African Americans age 65 or older living in Indianapolis were enrolled in the

study. In 2001, the project enrolled 1893 additional African American community-

dwelling participants 70 years and older. All participants agreed to undergo regular

follow-up cognitive assessment and clinical evaluations. Details on the assembling of

the original cohort and the enrichment cohort were described elsewhere.(Hall et al.,

2009; Hendrie et al., 2001) Electronic medical records from 1992 to December 31,

2014, were retrieved as a re-identified data set to examine cardiovascular diseases and

other risk factors. There were 4105 participants enrolled. We restricted our study to

the subject who enrolled before 2010, whom have longer medical history recorded in

the dataset. we have total 1428 subjects have complete record, within 1428 subjects,

we have 79% death incidence, 76% of death events are female, 85% death events are

male; The incidence for CAD is 33%, within which 34% is female and 31% is male;

The incidence for depression is 17%, within which 20% is female and 12% is male.
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Male group has higher incidence rate in death, but lower incidence rate in CAD and

depression. The mean and median age of event onset can be found in Table(4.3).

Within 1428 subjects, we have 994 CAD cases happened before depression and

death, 85 CAD cases happened after depression and before death; 384 depression cases

before CAD and death; 113 depression after CAD; 30 cases of death happened before

CAD and depression, 23 cases of death happened after CAD; 15 death happened after

depression; 23 death happened after experience CAD at first stage and depression at

second stage; 15 cases of death happened after experience depression at first stage

and CAD at second stage. The detail of data distribution is showed in Figure (4.7).

Figure 4.7: IIDP data for CAD and depression bivariate time to event with a semi-
compting risk study application in detail

Table(4.4) summarized the results for naive Cox model estimation and penal-

ized partial likelihood estimation. From the results, we observe that male group has

higher risk of death in all the scenario using the naive Cox model approach. Compared

to Cox proportional hazard estimation approach results in death, penalized partial
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likelihood model provided quite similar results, except for death after depression at

first stage and CAD at second stage situation.

In the meantime, the male group has higher risk of CAD in all the scenario

using naive Cox proportional hazard estimation approach. Compared to Cox model

result in CAD, penalized partial likelihood model shows the female group has higher

risk of CAD conditional on the depression happened at first.

For the depression, both models give similar results, which shows that males

group have reduced risk for depression.
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Table 4.4: Application result for gender effect in CAD and Depression with death as
semi-competing risk

Cox (Naive Independent) Penalized Partial

Estimate Standard Error Estimate Standard Error

β1 0.199∗ 0.062 0.020 0.114

β2 −0.393∗ 0.096 −0.353∗ 0.121

β3 0.426∗ 0.048 0.345∗ 0.099

β4 -0.264 0.154 −0.403∗ 0.124

β5 0.396∗ 0.082 0.255∗ 0.124

β6 0.784∗ 0.226 0.327 0.269

β7 0.152 0.155 -0.784 0.477

β8 0.221 0.143 0.176 0.291

β9 0.129 0.314 -0.916 0.793

∗: p < 0.05
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4.9 Conclusion and Discussion

We developed flexible frailty based semiparametric model for multi-event and multi-

state survival data with a semicompeting risks. Our models can incorporate different

covariates into the frailty terms for three different types of hazard functions corre-

sponding to the illness, death without illness, and death after illness. Our methods

extended the gamma frailty models by Xu et al. (2010) which used a single frailty

term to correlate the events and did not consider covariates for the frailty term.

In observational studies of chronic disease and aging, this model will help

address and identify risk factor for the terminal event after the occurrence of the non-

terminal event. We used penalized partial likelihood methods for estimation, which

provide accurate and robust estimates for inference.

Our models will also work with clustered data (Gray, 1994; Gustafson, 1997).

Further they can be extended beyond shared frailty models. For example, Gustafson

(1997) described a semicompeting risks model where relapse and death have corre-

lated frailties associated with clusters in addition to the random intercept specific

to individual subjects. And Rotolo (2013) thoroughly discussed nested frailty and

two level of frailty based parametric model and semiparametric model in multi-state

situation. Our model could also be easily extended to such correlated frailty models

and multi-level frailty model.
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Chapter 5

Conclusion and Discussion

In this thesis we studied several topics related to joint models of time to events data

with semi-competing risk. The bivariate and multivariate survival data can arise in

practice in difference ways, each study subject may experience several events or when

there exists some natural or artificial grouping of subjects which induced dependence

among failure times of the same group. Biomedical examples include the sequence

of tumor recurrences or infection episodes, the development of physical symptoms

or diseases in several organ systems, the onset of a disease among family members,

the onset of multiple disease in same subject. Throughout the dissertation,we focus

on estimating the association between risk factors and multiple events using model

formulation, development of estimation algorithms and asymptotic results.

In chapter 2, we studied the covariate dependent association: cross ratio, be-

tween bivariate survival times. The cross ratio is formulated as the ratio of two

conditional hazard functions and thus measures the relative hazard of one time com-

ponent conditional on another time component at some time point and beyond. A

question of significant interest in the gender effect to identify risk of coronary artery

disease (CAD) and depression. The Indiana Ibadan Dementia Project data provide a

unique opportunity for evaluating the gender effect in the risk of chronical disease by

assessing the association between age at onset of CAD and age at onset of depression.

Formal statistical analysis of this dependence is challenging due to the facts that both
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the time to events are subject to right-censoring and that their association depends

on age of event happened. Thus, in chapter 2, we consider a covariate dependent

cross ratio model estimation the dependence between the two events adjusting for

gender by using pseudo partial likelihood method instead of the true likelihood.

In the chapters 3 and 4, we focused on a unified approach to utilize infor-

mation on electronic medical record (EMR) for series of events. When subjects ex-

perienced multiple events, the case can be further complicated by the presence of

semi-competing risk. Semi-competing risks data are encountered when there is a

terminating event which potentially censors a nonterminating event. We proposed

frailty based semiparametric model for univariate event and bivariate events, when

there was a semicompeting risk. The concept of frailty model provides a suitable way

to introduce random effects in the model to account for unobserved heterogeneity. In

its simplest form, a frailty is an unobserved random factor that modifies multiplica-

tively the hazard function of an individual or a group or cluster of individuals. There

has recently been increased attention to semicompeting risk data as distinct from

classical competing risks data, in particular, inferences without covariates. In chap-

ters 3 and 4, we incorporate covariates. New penalized partial likelihood estimators

are constructed using Laplace approximation of the true likelihood, and the asymp-

totic property has been demonstrated in simulation studies. The proposed model,

associated algorithmic and method were ready to use in statistical estimation and

inference.

The current methods can easily take into time-dependent variables account.The

dependence between multiple events is introduced through a modulation mechanism

that leads itself naturally to incorporation of time-dependent covariates. We will then
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have a better chance of understanding the disease progression mechanism and many

other aspects of the disease monitoring and treatment.

The current framework may be extended in several directions:

1. Extension to other hazard models.

In addition to Cox proportional hazard models, there are other important re-

gression models in survival analysis including accelerated failure time models

(AFT) (Lawless, 2011; Wei, 1992). The Cox model and its various generaliza-

tions are mainly used in medical and biostatistical fields, while the AFT model

is primarily applied in reliability theory and industrial experiments. AFT model

offers a potentially useful statistical approach that is based upon the survival

curve rather than the hazard function. It will be a meaningful extension if our

method can be extended into AFT model in the presence of competing risk and

semicompeting risk.

2. Interval censoring on the disease outcomes.

Interval-censored data are often found in medical studies in which subjects are

assessed only periodically for the response of interest. The time when the event

of interest occurs is not directly observed but is known to take place within

some time intervals. For example, in a clinical trial subjects might visit a clinic

for assessment at predetermined times.The onset of a condition of interest is

known only to have occurred at some time between visits; the exact time of

onset is not known. The times of occurrence of these events are said to be

interval-censored.
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It will be another meaningful extension to consider non-terminal event with

interval censoring situation in our semi-competing risk model.

3. Model selection and model diagnostics.

To identify potential variables and appropriate frailty distribution would be

very helpful in failure data analysis. Selection of a proper model as a basis for

statistical inference is critical. This is especially so in the analysis of multiple,

interrelated events. To develop information criteria for model identification and

variable selection would be a meaningful extension. It is also important to

develop summary statistic to guide model diagnostics so that deviations from

the assumed frailty distribution can be detected.

4. Markov chain Monte Carlo (MCMC) and Bayesian Approach for computation,

estimation and prediction.

The current model presents computational challenge to standard likelihood

based approach because it involves high-dimensional integrations. The Bayesian

MCMC approach maybe a good option to solve this problem. In the meantime,

the Bayesian MCMC can be conveniently implemented in general software pack-

age like Stan/WinBUGS. The use of Bayesian methods also makes event pre-

diction very straightforward.

In conclusion, this dissertation developed novel statistical methods for ana-

lyzing univariate and bivariate survival times in the presence of semi-competing risk.

Our methods are readily applicable to a wide range of studies where multiple time to

events are observed in order to achieve unbiased results.
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Chapter 6

Appendix

6.1 More Simulation Results for Covariate Dependent Cross Ratio of

Bivariate Survival Times
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