26,587 research outputs found

    Weak decays of medium and heavy Lambda-hypernuclei

    Full text link
    We have made a new evaluation of the Lambda decay width in nuclear matter within the Propagator Method. Through the Local Density Approximation it is possible to obtain results in finite nuclei. We have also studied the dependence of the widths on the N-N and Lambda-N short range correlations. Using reasonable values for the parameters that control these correlations, as well as realistic nuclear densities and Lambda wave functions, we reproduce, for the first time, the experimental non-mesonic widths in a wide range of mass numbers (from medium to heavy hypernuclei).Comment: 22 pages, including 5 figure

    Real-time multiframe blind deconvolution of solar images

    Full text link
    The quality of images of the Sun obtained from the ground are severely limited by the perturbing effect of the turbulent Earth's atmosphere. The post-facto correction of the images to compensate for the presence of the atmosphere require the combination of high-order adaptive optics techniques, fast measurements to freeze the turbulent atmosphere and very time consuming blind deconvolution algorithms. Under mild seeing conditions, blind deconvolution algorithms can produce images of astonishing quality. They can be very competitive with those obtained from space, with the huge advantage of the flexibility of the instrumentation thanks to the direct access to the telescope. In this contribution we leverage deep learning techniques to significantly accelerate the blind deconvolution process and produce corrected images at a peak rate of ~100 images per second. We present two different architectures that produce excellent image corrections with noise suppression while maintaining the photometric properties of the images. As a consequence, polarimetric signals can be obtained with standard polarimetric modulation without any significant artifact. With the expected improvements in computer hardware and algorithms, we anticipate that on-site real-time correction of solar images will be possible in the near future.Comment: 16 pages, 12 figures, accepted for publication in A&

    Sparse inversion of Stokes profiles. I. Two-dimensional Milne-Eddington inversions

    Full text link
    Inversion codes are numerical tools used for the inference of physical properties from the observations. Despite their success, the quality of current spectropolarimetric observations and those expected in the near future presents a challenge to current inversion codes. The pixel-by-pixel strategy of inverting spectropolarimetric data that we currently utilize needs to be surpassed and improved. The inverted physical parameters have to take into account the spatial correlation that is present in the data and that contains valuable physical information. We utilize the concept of sparsity or compressibility to develop an new generation of inversion codes for the Stokes parameters. The inversion code uses numerical optimization techniques based on the idea of proximal algorithms to impose sparsity. In so doing, we allow for the first time to exploit the presence of spatial correlation on the maps of physical parameters. Sparsity also regularizes the solution by reducing the number of unknowns. We compare the results of the new inversion code with pixel-by-pixel inversions, demonstrating the increase in robustness of the solution. We also show how the method can easily compensate for the effect of the telescope point spread function, producing solutions with an enhanced contrast.Comment: 13 pages, 8 figures, accepted for publication in A&

    Decay rates of medium-heavy Lambda-hypernuclei within the Propagator Method

    Full text link
    The Lambda decay rates in nuclei has been calculated in ref. 1 using the Propagator Method in Local Density Approximation. We have studied the dependence of the widths (including the one for the two-body induced process Lambda NN -> NNN) on the N-N and Lambda-N short range correlations. Using a reasonable parametrization of these correlations, as well as realistic nuclear densities and Lambda wave functions, we reproduce, for the first time, the experimental non-mesonic widths from medium to heavy hypernuclei.Comment: 8 pages, 1 figure. Talk given at the APCTP Workshop Strangeness Nuclear Physics, Seoul National University, Seoul, Korea, 19-22 February 199

    {\it Ab initio} 27Al^{27}Al NMR chemical shifts and quadrupolar parameters for Al2O3Al_2O_3 phases and their precursors

    Full text link
    The Gauge-Including Projector Augmented Wave (GIPAW) method, within the Density Functional Theory (DFT) Generalized Gradient Approximation (GGA) framework, is applied to compute solid state NMR parameters for 27Al^{27}Al in the α\alpha, θ\theta, and κ\kappa aluminium oxide phases and their gibbsite and boehmite precursors. The results for well-established crystalline phases compare very well with available experimental data and provide confidence in the accuracy of the method. For γ\gamma-alumina, four structural models proposed in the literature are discussed in terms of their ability to reproduce the experimental spectra also reported in the literature. Among the considered models, the Fd3ˉmFd\bar{3}m structure proposed by Paglia {\it et al.} [Phys. Rev. B {\bf 71}, 224115 (2005)] shows the best agreement. We attempt to link the theoretical NMR parameters to the local geometry. Chemical shifts depend on coordination number but no further correlation is found with geometrical parameters. Instead our calculations reveal that, within a given coordination number, a linear correlation exists between chemical shifts and Born effective charges
    corecore