145 research outputs found

    The improvement of recall using third grade social studies materials

    Full text link
    Thesis (Ed.M.)--Boston University, 1947. This item was digitized by the Internet Archive

    Effect of Laparoscopic Adjustable Gastric Banding on Metabolic Syndrome and Its Risk Factors in Morbidly Obese Adolescents

    Get PDF
    We examined the effect of laparoscopic adjustable gastric banding (LAGB) on weight loss, inflammatory markers, and components of the Metabolic Syndrome (MeS) in morbidly obese adolescents and determined if those with MeS lose less weight post-LAGB than those without. Data from 14–18 yr adolescents were obtained at baseline, 6 and 12 months following LAGB. Significant weight loss and improvements in MeS components were observed 6 months and one year following LAGB. The incidence of MeS declined 56.8% after 6 months and 69.6% after 12 months. There was no significant difference in amount of weight lost post-LAGB between those with and without MeS at either timepoint. Correlations between change in weight parameters and components of MeS in those with and without MeS at baseline were examined and found to vary by diagnostic category. LAGB is effective for short-term improvement in weight, inflammatory markers, and components of MeS in morbidly obese adolescents

    Examining whether and how instructional coordination occurs within introductory undergraduate STEM courses

    Get PDF
    Instructors’ interactions can foster knowledge sharing around teaching and the use of research-based instructional strategies (RBIS). Coordinated teaching presents an impetus for instructors’ interactions and creates opportunities for instructional improvement but also potentially limits an instructor’s autonomy. In this study, we sought to characterize the extent of coordination present in introductory undergraduate courses and to understand how departments and instructors implement and experience course coordination. We examined survey data from 3,641 chemistry, mathematics, and physics instructors at three institution types and conducted follow-up interviews with a subset of 24 survey respondents to determine what types of coordination existed, what factors led to coordination, how coordination constrained instruction, and how instructors maintained autonomy within coordinated contexts. We classified three approaches to coordination at both the overall course and course component levels: independent (i.e., not coordinated), collaborative (decisionmaking by instructor and others), controlled (decision-making by others, not instructor). Two course components, content coverage and textbooks, were highly coordinated. These curricular components were often decided through formal or informal committees, but these decisions were seldom revisited. This limited the ability for instructors to participate in the decision-making process, the level of interactions between instructors, and the pedagogical growth that could have occurred through these conversations. Decision-making around the other two course components, instructional methods and exams, was more likely to be independently determined by the instructors, who valued this autonomy. Participants in the study identified various ways in which collaborative coordination of courses can promote but also inhibit pedagogical growth. Our findings indicate that the benefits of collaborative course coordination can be realized when departments develop coordinated approaches that value each instructor’s autonomy, incorporate shared and ongoing decision-making, and facilitate collaborative interactions and knowledge sharing among instructors

    Examining whether and how instructional coordination occurs within introductory undergraduate STEM courses

    Get PDF
    Instructors’ interactions can foster knowledge sharing around teaching and the use of research-based instructional strategies (RBIS). Coordinated teaching presents an impetus for instructors’ interactions and creates opportunities for instructional improvement but also potentially limits an instructor’s autonomy. In this study, we sought to characterize the extent of coordination present in introductory undergraduate courses and to understand how departments and instructors implement and experience course coordination. We examined survey data from 3,641 chemistry, mathematics, and physics instructors at three institution types and conducted follow-up interviews with a subset of 24 survey respondents to determine what types of coordination existed, what factors led to coordination, how coordination constrained instruction, and how instructors maintained autonomy within coordinated contexts. We classified three approaches to coordination at both the overall course and course component levels: independent (i.e., not coordinated), collaborative (decision-making by instructor and others), controlled (decision-making by others, not instructor). Two course components, content coverage and textbooks, were highly coordinated. These curricular components were often decided through formal or informal committees, but these decisions were seldom revisited. This limited the ability for instructors to participate in the decision-making process, the level of interactions between instructors, and the pedagogical growth that could have occurred through these conversations. Decision-making around the other two course components, instructional methods and exams, was more likely to be independently determined by the instructors, who valued this autonomy. Participants in the study identified various ways in which collaborative coordination of courses can promote but also inhibit pedagogical growth. Our findings indicate that the benefits of collaborative course coordination can be realized when departments develop coordinated approaches that value each instructor’s autonomy, incorporate shared and ongoing decision-making, and facilitate collaborative interactions and knowledge sharing among instructors

    Examining whether and how instructional coordination occurs within introductory undergraduate STEM courses

    Get PDF
    Instructors’ interactions can foster knowledge sharing around teaching and the use of research-based instructional strategies (RBIS). Coordinated teaching presents an impetus for instructors’ interactions and creates opportunities for instructional improvement but also potentially limits an instructor’s autonomy. In this study, we sought to characterize the extent of coordination present in introductory undergraduate courses and to understand how departments and instructors implement and experience course coordination. We examined survey data from 3,641 chemistry, mathematics, and physics instructors at three institution types and conducted follow-up interviews with a subset of 24 survey respondents to determine what types of coordination existed, what factors led to coordination, how coordination constrained instruction, and how instructors maintained autonomy within coordinated contexts. We classified three approaches to coordination at both the overall course and course component levels: independent (i.e., not coordinated), collaborative (decision-making by instructor and others), controlled (decision-making by others, not instructor). Two course components, content coverage and textbooks, were highly coordinated. These curricular components were often decided through formal or informal committees, but these decisions were seldom revisited. This limited the ability for instructors to participate in the decision-making process, the level of interactions between instructors, and the pedagogical growth that could have occurred through these conversations. Decision-making around the other two course components, instructional methods and exams, was more likely to be independently determined by the instructors, who valued this autonomy. Participants in the study identified various ways in which collaborative coordination of courses can promote but also inhibit pedagogical growth. Our findings indicate that the benefits of collaborative course coordination can be realized when departments develop coordinated approaches that value each instructor’s autonomy, incorporate shared and ongoing decision-making, and facilitate collaborative interactions and knowledge sharing among instructors

    Effect of Laparoscopic Adjustable Gastric Banding on Metabolic Syndrome and Its Risk Factors in Morbidly Obese Adolescents

    Get PDF
    We examined the effect of laparoscopic adjustable gastric banding (LAGB) on weight loss, inflammatory markers, and components of the Metabolic Syndrome (MeS) in morbidly obese adolescents and determined if those with MeS lose less weight post-LAGB than those without. Data from 14-18 yr adolescents were obtained at baseline, 6 and 12 months following LAGB. Significant weight loss and improvements in MeS components were observed 6 months and one year following LAGB. The incidence of MeS declined 56.8% after 6 months and 69.6% after 12 months. There was no significant difference in amount of weight lost post-LAGB between those with and without MeS at either timepoint. Correlations between change in weight parameters and components of MeS in those with and without MeS at baseline were examined and found to vary by diagnostic category. LAGB is effective for short-term improvement in weight, inflammatory markers, and components of MeS in morbidly obese adolescents

    Approaches to link RNA secondary structures with splicing regulation

    Full text link
    In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by facilitating or by hindering the interaction with factors and small nuclear ribonucleoproteins (snRNPs) that regulate splicing. Moreover, the secondary structure could play a fundamental role in the splicing of yeast species, which lack many of the regulatory splicing factors present in metazoans. This review describes the steps in the analysis of the secondary structure of the pre-mRNA and its possible relation to splicing. As a working example, we use the case of yeast and the problem of the recognition of the 3-prime splice site.Comment: 21 pages, 7 figure

    GC content around splice sites affects splicing through pre-mRNA secondary structures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (<it>Homo sapiens</it>), mice (<it>Mus musculus</it>), fruit flies (<it>Drosophila melanogaster</it>), and nematodes (<it>Caenorhabditis elegans</it>) to further investigate this phenomenon.</p> <p>Results</p> <p>We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures.</p> <p>Conclusion</p> <p>All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.</p
    • 

    corecore