164 research outputs found

    Evidence-Based Acquisition: A Real Life Account of Managing the Program Within The Orbis Cascade Alliance

    Get PDF
    In 2015 the Orbis Cascade Alliance investigated a consortium wide evidence-based acquisition (EBA) model to incorporate into its established eBook program, and began a pilot of Wiley’s Usage Based Collection Management Model. EBA is an acquisition model that grants library patrons access to a title list over an agreed-upon time period for a pre-negotiated amount of money, and titles from that list are then selected for purchase based on the evidence of usage from the initial access period. This article shares the consortium’s experiences evaluating usage, managing titles and records, controlling duplication, predicting costs, and the inclusion of MARC records to enhance discoverability

    Noninvasive Ultrasound Monitoring of Embryonic and Fetal Development in Chinchilla lanigera to Predict Gestational Age: Preliminary Evaluation of This Species as a Novel Animal Model of Human Pregnancy

    Get PDF
    Ultrasound is a noninvasive routine method that allows real-time monitoring of fetal development in utero to determine gestational age and to detect congenital anomalies and multiple pregnancies. To date, the developmental biology of Chinchilla lanigera has not yet been characterized. This species has been found to undergo placentation, long gestation, and fetal dimensions similar to those in humans. The aim of this study was to assess the use of high-frequency ultrasound (HFUS) and clinical ultrasound (US) to predict gestational age in chinchillas and evaluate the possibility of this species as a new animal model for the study of human pregnancy. In this study, 35 pregnant females and a total of 74 embryos and fetuses were monitored. Ultrasound examination was feasible in almost all chinchilla subjects. It was possible to monitor the chinchilla embryo with HFUS from embryonic day (E) 15 to 60 and with US from E15 to E115 due to fetus dimensions. The placenta could be visualized and measured with HFUS from E15, but not with US until E30. From E30, the heartbeat became detectable and it was possible to measure fetal biometrics. In the late stages of pregnancy, stomach, eyes, and lenses became visible. Our study demonstrated the importance of employing both techniques while monitoring embryonic and fetal development to obtain an overall and detailed view of all structures and to recognize any malformation at an early stage. Pregnancy in chinchillas can be confirmed as early as the 15th day postmating, and sonographic changes and gestational age are well correlated. The quantitative measurements of fetal and placental growth performed in this study could be useful in setting up a database for comparison with human fetal ultrasounds. We speculate that, in the future, the chinchilla could be used as an animal model for the study of US in human pregnancy

    Inherent Metal Elements in Biomass Pyrolysis: A Review

    Get PDF
    One of the main drawbacks of using biomass as pyrolysis feedstock consists of the huge variability of the different biomass resources which undermines the viability of downstream processes. Inherent inorganic elements greatly contribute to enhance the compositional variability issues due to their catalytic effect (especially alkali and alkaline earth metals (AAEMs)) and the technical problems arising due to their presence. Due to the different pretreatments adopted in the experimental investigations as well as the different reactor configurations and experimental conditions, some mechanisms involving interactions between these elements and the biomass organic fraction during pyrolysis are still debated. This is the reason why predicting the results of these interactions by adapting the existing kinetic models of pyrolysis is still challenging. In this work, the most prominent experimental works of the last 10 years dealing with the catalytic effects of biomass inherent metals on the pyrolysis process are reviewed. Reaction pathways, products distributions and characteristics, and impacts on the products utilization are discussed with a focus on AAEMs and on potential toxic metallic elements in hyperaccumulator plants. The literature findings are discussed in relation to the applied laboratory procedures controlling the concentration of inherent inorganic elements, their capability of preserving the chemical integrity of the main organic components, and the ability of resembling the inherent inorganic elements in the raw biomass. The goal is to reveal possible experimental inconsistencies and to provide a clear scheme of the reaction pathways altered by the presence of inherent inorganics. This analysis paves the way for the examination of the proposed modifications of the existing models aiming at capturing the effect of inorganics on pyrolysis kinetics. Finally, the most relevant shortcomings and bottlenecks in existing experimental and modeling approaches are analyzed and directions for further studies are suggested

    Ageritin from pioppino mushroom: The prototype of ribotoxin-like proteins, a novel family of specific ribonucleases in edible mushrooms

    Get PDF
    Ageritin is a specific ribonuclease, extracted from the edible mushroom Cyclocybe aegerita (synonym Agrocybe aegerita), which cleaves a single phosphodiester bond located within the uni-versally conserved alpha-sarcin loop (SRL) of 23–28S rRNAs. This cleavage leads to the inhibition of protein biosynthesis, followed by cellular death through apoptosis. The structural and enzy-matic properties show that Ageritin is the prototype of a novel specific ribonucleases family named ‘ribotoxin-like proteins’, recently found in fruiting bodies of other edible basidiomycetes mushrooms (e.g., Ostreatin from Pleurotus ostreatus, Edulitins from Boletus edulis, and Gambositin from Calocybe gambosa). Although the putative role of this toxin, present in high amount in fruiting body (>2.5 mg per 100 g) of C. aegerita, is unknown, its antifungal and insecticidal actions strongly support a role in defense mechanisms. Thus, in this review, we focus on structural, biological, antipathogenic, and enzymatic characteristics of this ribotoxin-like protein. We also highlight its biological relevance and potential biotechnological applications in agriculture as a bio-pesticide and in biomedicine as a therapeutic and diagnostic agent

    Evaluation of corneal distortion characteristics in different eyes using Scheimpflug camera device

    Get PDF
    Objective. To study the correlations between corneal distortion and morphological features in different kinds of eyes such as healthy ones (HE), ones previously undergone myopic PRK (PRKE), ones affected by keratoconus (KCE) and keratoconus eyes previously undergone corneal collagen crosslinking (CCCE). Materials and Methods. In this retrospective comparative study, a total of 106 HE of 106 patients, 58 PRKE of 58 patients, 33 KCE of 33 patients, 28 CCCE of 28 patients were included. A complete examination of all eyes was followed by tomographic (Pentacam, Oculus, Wetzlar, Germany) and biomechanical (Corvis ST, Oculus, Wetzlar, Germany) evaluation. Differences among Corvis ST (CST) parameters in the different groups have been analyzed. Linear regressions between central corneal thickness (CCT), intraocular pressure (IOP) and anterior corneal curvature measured with Simulated Keratometry (SK), versus corneal deformation parameters measured with Corvis ST in the different groups, have been run using SPSS software version 18.0. Results, HE showed a significant correlation between main curvature power of the cornea within the central 3 mm expressed in Diopters (KM) and 6 CST parameters; between CCT and 4 CST parameters and between IOP and 5 CST parameters. PRKE showed a significant correlation between KM and 3 CST parameters; between IOP and 4 CST parameters and none between CCT and CST parameters. KCE showed a significant correlation between SK and 3 CST parameters; between IOP and 3 CST parameters and none between CCT and CST parameters. CCCE showed a significant correlation between KM and 5 CST parameters; between CCT and 1 CST parameters and between IOP and 5 CST parameters. Discussion. Data of this study suggest that both corneal curvature and IOP could have a greater influence on the corneal deformation, compared to central corneal thickness (CCT). These results should be taken into account by further studies aiming to assess biomechanical corneal characteristics

    Cannabidiolic acid in Hemp Seed Oil Table Spoon and Beyond

    Get PDF
    Cannabidiolic acid (CBDA) is the main precannabinoid in industrial hemp. It represents a common constituent of hemp seed oil, but mainly abundant in the aerial parts of the plant (including their processing waste). Thus, the optimization of fast and low-cost purification strategies is mandatory, as well as a deep investigation on its nutraceutical and cosmeceutical properties. To this purpose, CBDA content in hemp seed oil is evaluated, and its recovery from wasted leaves is favorably achieved. The cytotoxicity screening towards HaCaT cells, by means of MTT, SRB and LDH release assays, suggested it was not able to decrease cell viability or perturb cell integrity up to 10 μM concentration. Thus, the ability of CBDA to differentially modulate the release of proinflammatory cytokines and chemokines mediators has been evaluated, finding that CBDA decreased IFN-γ, CXCL8, CXCL10, CCL2, CCL4 and CCL5, mostly in a dose-dependent manner, with 10 μM tested concentration exerting the highest activity. These data, together with those from assessing antimicrobial activity against Gram(+) and Gram(-) bacteria and the antibiofilm formation, suggest that CBDA is able to counteract the inflammatory response, also preventing bacteria colonization

    Head and Neck Veins of the Mouse. A Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study.

    Get PDF
    To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks) were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4T or 7T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1) the petrosquamous sinus, draining into the posterior facial vein, 2) the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3) the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra- cranial veins

    Influence of exposing dental implants into the sinus cavity on survival and complications rate: a systematic review

    Full text link
    Abstract Background After tooth loss, the posterior maxilla is usually characterized by limited bone height secondary to pneumatization of the maxillary sinus and/or collapse of the alveolar ridge that preclude in many instances the installation of dental implants. In order to compensate for the lack of bone height, several treatment options have been proposed. These treatment alternatives aimed at the installation of dental implants with or without the utilization of bone grafting materials avoiding the perforation of the Schneiderian membrane. Nevertheless, membrane perforations represent the most common complication among these procedures. Consequently, the present review aimed at the elucidation of the relevance of this phenomenon on implant survival and complications. Material and methods Electronic and manual literature searches were performed by two independent reviewers in several databases, including MEDLINE, EMBASE, and Cochrane Oral Health Group Trials Register, for articles up to January 2018 reporting outcome of implant placement perforating the sinus floor without regenerative procedure (lateral sinus lift or transalveolar technique) and graft material. The intrusion of the implants can occur during drilling or implant placement, with and without punch out Schneiderian. Only studies with at least 6 months of follow-up were included in the qualitative assessment. Results Eight studies provided information on the survival rate, with a global sample of 493 implants, being the weighted mean survival rate 95.6% (IC 95%), after 52.7 months of follow-up. The level of implant penetration (≤ 4 mm or > 4 mm) did not report statistically significant differences in survival rate (p = 0.403). Seven studies provided information on the rate of clinical complications, being the mean complication rate 3.4% (IC 95%). The most frequent clinical complication was epistaxis, without finding significant differences according to the level of penetration. Five studies provide information on the radiographic complication; the most common complication was thickening of the Schneiderian membrane. The weighted complication rate was 14.8% (IC 95%), and penetration level affects the rate of radiological complications, being these of 5.29% in implant penetrating ≤4 mm and 29.3% in implant penetrating > 4 mm, without reaching statistical significant difference (p = 0.301). Conclusion The overall survival rate of the implants into the sinus cavity was 95.6%, without statistical differences according to the level of penetration. The clinical and radiological complications were 3.4% and 14.8% respectively. The most frequent clinical complication was the epistaxis, and the radiological complication was thickening of the Schneiderian membrane, without reaching statistical significant difference according to the level of implant penetration inside the sinus.https://deepblue.lib.umich.edu/bitstream/2027.42/147740/1/40729_2019_Article_157.pd

    Cytotoxicity effect of quinoin, type 1 ribosome-inactivating protein from quinoa seeds, on glioblastoma cells

    Get PDF
    Ribosome-inactivating proteins (RIPs) are found in several edible plants and are well characterized. Many studies highlight their use in cancer therapy, alone or as immunoconjugates, linked to monoclonal antibodies directed against target cancer cells. In this context, we investigate the cytotoxicity of quinoin, a novel type 1 RIP from quinoa seeds, on human continuous and primary glioblastoma cell lines. The cytotoxic effect of quinoin was assayed on human continuous glioblas-toma U87Mg cells. Moreover, considering that common conventional glioblastoma multiforme (GBM) cell lines are genetically different from the tumors from which they derive, the cytotoxicity of quinoin was subsequently tested towards primary cells NULU and ZAR (two cell lines established from patients’ gliomas), also in combination with the chemotherapeutic agent temozolomide (TMZ), cur-rently used in glioblastoma treatment. The present study demonstrated that quinoin (2.5 and 5.0 nM) strongly reduced glioblastoma cells’ growth. The mechanisms responsible for the inhibitory action of quinoin are different in the tested primary cell lines, reproducing the heterogeneous response of glioblastoma cells. Interestingly, primary cells treated with quinoin in combination with TMZ were more sensitive to the treatment. Overall, our data highlight that quinoin could represent a novel tool for glioblastoma therapy and a possible adjuvant for the treatment of the disease in combination with TMZ, alone or as possible immunoconjugates/nanoconstructs

    Ageritin—The Ribotoxin-like Protein from Poplar Mushroom (Cyclocybe aegerita) Sensitizes Primary Glioblastoma Cells to Conventional Temozolomide Chemotherapy

    Get PDF
    Here, we propose Ageritin, the prototype of the ribotoxin-like protein family, as an adjuvant treatment to control the growth of NULU and ZAR, two primary human glioblastoma cell lines, which exhibit a pharmacoresistance phenotype. Ageritin is able to inhibit NULU and ZAR growth with an IC50 of 0.53 ± 0.29 µM and 0.42 ± 0.49 µM, respectively. In this study, Ageritin treatment highlighted a macroscopic genotoxic response through the formation of micronuclei, which represents the morphological manifestation of genomic chaos induced by this toxin. DNA damage was not associated with either the deregulation of DNA repair enzymes (i.e., ATM and DNA-PK), as demonstrated by quantitative PCR, or reactive oxygen species. Indeed, the pretreatment of the most responsive cell line ZAR with the ROS scavenger N-acetylcysteine (NAC) did not follow the reverse cytotoxic effect of Ageritin, suggesting that this protein is not involved in cellular oxidative stress. Vice versa, Ageritin pretreatment strongly enhanced the sensitivity to temozolomide (TMZ) and inhibited MGMT protein expression, restoring the sensitivity to temozolomide. Overall, Ageritin could be considered as a possible innovative glioblastoma treatment, directly damaging DNA and downregulating the MGMT DNA repair protein. Finally, we verified the proteolysis susceptibility of Ageritin using an in vitro digestion system, and considered the future perspective use of this toxin as a bioconjugate in biomedicine
    • …
    corecore