45 research outputs found

    Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines

    Get PDF
    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes

    Cigarette smoke and lipopolysaccharide induce a proliferative airway smooth muscle phenotype

    Get PDF
    Background: A major feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, which includes an increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodelling in COPD are currently unknown. We hypothesized that cigarette smoke (CS) and/or lipopolysaccharide (LPS), a major constituent of CS, organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in COPD patients, would induce phenotype changes of ASM. Methods: To this aim, using cultured bovine tracheal smooth muscle (BTSM) cells and tissue, we investigated the direct effects of CS extract (CSE) and LPS on ASM proliferation and contractility. Results: Both CSE and LPS induced a profound and concentration-dependent increase in DNA synthesis in BTSM cells. CSE and LPS also induced a significant increase in BTSM cell number, which was associated with increased cyclin D1 expression and dependent on activation of ERK 1/2 and p38 MAP kinase. Consistent with a shift to a more proliferative phenotype, prolonged treatment of BTSM strips with CSE or LPS significantly decreased maximal methacholine- and KCl-induced contraction. Conclusions: Direct exposure of ASM to CSE or LPS causes the induction of a proliferative, hypocontractile ASM phenotype, which may be involved in airway remodelling in COPD

    Tilt aftereffect following adaptation to translational Glass patterns

    Get PDF
    Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We assessed whether adaptation to stationary oriented translational GPs suppresses the activity of orientation selective detectors producing a tilt aftereffect (TAE). The results showed that adaptation to GPs produces a TAE similar to that reported in previous studies, though reduced in amplitude. This suggests the involvement of orientation selective mechanisms. We also measured the interocular transfer (IOT) of the GP-induced TAE and found an almost complete IOT, indicating the involvement of orientation selective and binocularly driven units. In additional experiments, we assessed the role of attention in TAE from GPs. The results showed that distraction during adaptation similarly modulates the TAE after adapting to both GPs and gratings. Moreover, in the case of GPs, distraction is likely to interfere with the adaptation process rather than with the spatial summation of local dipoles. We conclude that TAE from GPs possibly relies on visual processing levels in which the global orientation of GPs has been encoded by neurons that are mostly binocularly driven, orientation selective and whose adaptation-related neural activity is strongly modulated by attention

    Robust Biomarkers: Methodologically Tracking Causal Processes in Alzheimer’s Measurement

    Get PDF
    In biomedical measurement, biomarkers are used to achieve reliable prediction of, and useful causal information about patient outcomes while minimizing complexity of measurement, resources, and invasiveness. A biomarker is an assayable metric that discloses the status of a biological process of interest, be it normative, pathophysiological, or in response to intervention. The greatest utility from biomarkers comes from their ability to help clinicians (and researchers) make and evaluate clinical decisions. In this paper we discuss a specific methodological use of clinical biomarkers in pharmacological measurement: Some biomarkers, called ‘surrogate markers’, are used to substitute for a clinically meaningful endpoint corresponding to events and their penultimate risk factors. We confront the reliability of clinical biomarkers that are used to gather information about clinically meaningful endpoints. Our aim is to present a systematic methodology for assessing the reliability of multiple surrogate markers (and biomarkers in general). To do this we draw upon the robustness analysis literature in the philosophy of science and the empirical use of clinical biomarkers. After introducing robustness analysis we present two problems with biomarkers in relation to reliability. Next, we propose an intervention-based robustness methodology for organizing the reliability of biomarkers in general. We propose three relevant conditions for a robust methodology for biomarkers: (R1) Intervention-based demonstration of partial independence of modes: In biomarkers partial independence can be demonstrated through exogenous interventions that modify a process some number of “steps” removed from each of the markers. (R2) Comparison of diverging and converging results across biomarkers: By systematically comparing partially-independent biomarkers we can track under what conditions markers fail to converge in results, and under which conditions they successfully converge. (R3) Information within the context of theory: Through a systematic cross-comparison of the markers we can make causal conclusions as well as eliminate competing theories. We apply our robust methodology to currently developing Alzheimer’s research to show its usefulness for making causal conclusions
    corecore