863 research outputs found

    Development and Evaluation of a Multi-frequency Bioelectrical Impedance Analysis Analyzer for Estimating Acupoint Composition

    Get PDF
    AbstractThe purpose of this study was to suggest a new method of estimating acupoint compositions by using a multi-frequency bioelectrical impedance analysis (MF-BIA) method at 5 kHz, 50 kHz and 200 kHz within 2 cm of acupoints divided into local segments. To verify the system developed, we confirmed the stable occurrence of a constant current at every frequency, regardless of the impedance connected to the electrodes. Moreover, we found left and right distal bicep brachii aponeurosis to be identical by using ultrasound imaging, and we analyzed the repeatability of the findings by making 10 consecutive sets of measurements (p > 0.05). To evaluate the practical use of the acupoint composition, we used the MF-BIA analyzer to measure the left and right LU3, LU4, and LU9 at the lung meridian. We confirmed that the potentials generated were equal to the changes in the cell membrane function, which were caused by the applied frequency (p < 0.01). We also verified that the MF-BIA analyzer measurements corresponded to the acupoint components by comparing the left and right potentials generated (p > 0.05). Hence, we conclude that the MF-BIA analyzer can be used to estimate the acupoint composition based on the acupoint state

    Anti-obesity effects of Yerba Mate (Ilex Paraguariensis): a randomized, double-blind, placebo-controlled clinical trial

    Get PDF
    Dietary assessment parameters of the Yerba Mate and placebo groups measured at 0, 6 and 12 weeks. (DOC 37.5 kb

    Aharonov-Bohm-Coulomb Problem in Graphene Ring

    Full text link
    We study the Aharonov-Bohm-Coulomb problem in a graphene ring. We investigate, in particular, the effects of a Coulomb type potential of the form ξ/r\xi/r on the energy spectrum of Dirac electrons in the graphene ring in two different ways: one for the scalar coupling and the other for the vector coupling. It is found that, since the potential in the scalar coupling breaks the time-reversal symmetry between the two valleys as well as the effective time-reversal symmetry in a single valley, the energy spectrum of one valley is separated from that of the other valley, demonstrating a valley polarization. In the vector coupling, however, the potential does not break either of the two symmetries and its effect appears only as an additive constant to the spectrum of Aharonov-Bohm potential. The corresponding persistent currents, the observable quantities of the symmetry-breaking energy spectra, are shown to be asymmetric about zero magnetic flux in the scalar coupling, while symmetric in the vector coupling.Comment: 20 pages, 12 figures (V2) 18 pages, accepted in JPHYS

    Isolation and Expression Profile of the Ca2+-Activated Chloride Channel-like Membrane Protein 6 Gene in Xenopus laevis

    Get PDF
    To clone the first anion channel from Xenopus laevis (X. laevis), we isolated a calcium-activated chloride channel (CLCA)-like membrane protein 6 gene (CMP6) in X. laevis. As a first step in gene isolation, an expressed sequence tags database was screened to find the partial cDNA fragment. A putative partial cDNA sequence was obtained by comparison with rat CLCAs identified in our laboratory. First stranded cDNA was synthesized by reverse transcription polymerase-chain reaction (RT-PCR) using a specific primer designed for the target cDNA. Repeating the 5' and 3' rapid amplification of cDNA ends, full-length cDNA was constructed from the cDNA pool. The full-length CMP6 cDNA completed via 5'- and 3'-RACE was 2,940 bp long and had an open reading frame (ORF) of 940 amino acids. The predicted 940 polypeptides have four major transmembrane domains and showed about 50% identity with that of rat brain CLCAs in our previously published data. Semi-quantification analysis revealed that CMP6 was most abundantly expressed in small intestine, colon and liver. However, all tissues except small intestine, colon and liver had undetectable levels. This result became more credible after we did real-time PCR quantification for the target gene. In view of all CLCA studies focused on human or murine channels, this finding suggests a hypothetical protein as an ion channel, an X. laevis CLCA

    Probing the Importance of Charge Balance and Noise Current in WSe2/WS2/MoS(2)van der Waals Heterojunction Phototransistors by Selective Electrostatic Doping

    Get PDF
    Heterojunction structures using 2D materials are promising building blocks for electronic and optoelectronic devices. The limitations of conventional silicon photodetectors and energy devices are able to be overcome by exploiting quantum tunneling and adjusting charge balance in 2D p–n and n–n junctions. Enhanced photoresponsivity in 2D heterojunction devices can be obtained with WSe2 and BP as p-type semiconductors and MoS2 and WS2 as n-type semiconductors. In this study, the relationship between photocurrent and the charge balance of electrons and holes in van der Waals heterojunctions is investigated. To observe this phenomenon, a p-WSe2/n-WS2/n-MoS2 heterojunction device with both p–n and n–n junctions is fabricated. The device can modulate the charge carrier balance between heterojunction layers to generate photocurrent upon illumination by selectively applying electrostatic doping to a specific layer. Using photocurrent mapping, the operating transition zones for the device is demonstrated, allowing to accurately identify the locations where photocurrent generates. Finally, the origins of flicker and shot noise at the different semiconductor interfaces are analyzed to understand their effect on the photoresponsivity and detectivity of unit active area (2.5 µm2, λ = 405 nm) in the p-WSe2/n-WS2/n-MoS2 heterojunction device. © 2020 The Authors. Published by Wiley-VCH GmbH1

    EMMPRIN expression is associated with metastatic progression in osteosarcoma

    Get PDF
    Background Extracellular matrix metalloproteinase inducer (EMMPRIN), a cell-surface glycoprotein, is overexpressed in several cancer types. EMMPRIN induces a metastatic phenotype by triggering the production of matrix metalloproteinase proteins (MMPs) such as MMP1 and MMP2, and vascular endothelial growth factor (VEGF) in cancer cells and the surrounding stromal cells. The purpose of this study was to investigate the expression and role of EMMPRIN in osteosarcoma. Methods The level of EMMPRIN expression was evaluated using reverse transcriptase polymerase chain reaction (RT-PCR) in 6 tumor-derived osteosarcoma cell lines and compared with that in normal osteoblasts. To study the prognostic significance of EMMPRIN expression, immunohistochemistry was carried out in prechemotherapy biopsies of 54 patients. siRNA knockdown of EMMPRIN in SaOS-2 cells was conducted to explore the role of EMMPRIN. To study the role of EMMPRIN in tumor-stromal interaction in MMP production and invasion, co-culture of SaOS-2 cells with osteoblasts and fibroblasts was performed. Osteosarcoma 143B cells were injected into the tail vein of BALB/c mice and lung metastasis was analyzed. Results EMMRIN mRNA expression was significantly higher in 5 of 6 (83%) tumor-derived cells than in MG63 cells. 90% of specimens (50/54) stained positive for EMMPRIN by immunohistochemistry, and higher expression of EMMPRIN was associated with shorter metastasis-free survival (p = 0.023). Co-culture of SaOS-2 with osteoblasts resulted in increased production of pro-MMP2 and VEGF expression, which was inhibited by EMMPRIN-targeting siRNA. siRNA knockdown of EMMPRIN resulted in decreased invasion. EMMPRIN shRNA-transfected 143B cells showed decreased lung metastasis in vivo. Conclusions Our data suggest that EMMPRIN acts as a mediator of osteosarcoma metastasis by regulating MMP and VEGF production in cancer cells as well as stromal cells. EMMPRIN could serve as a therapeutic target in osteosarcoma.The authors declare that they have nothing to disclose. This study was supported by National Research Foundation of Korea Grant funded by the Korean Government (Grant no. 2009–0136) and Doosan Yonkang Foundation (Grant no. 30–2014-0120). The funding body had no role in the design of the study and collection, analysis, and interpretation of data and in writing this manuscript

    Amplitude Damping for single-qubit System with single-qubit mixed-state Environment

    Full text link
    We study a generalized amplitude damping channel when environment is initially in the single-qubit mixed state. Representing the affine transformation of the generalized amplitude damping by a three-dimensional volume, we plot explicitly the volume occupied by the channels simulatable by a single-qubit mixed-state environment. As expected, this volume is embedded in the total volume by the channels which is simulated by two-qubit enviroment. The volume ratio is approximately 0.08 which is much smaller than 3/8, the volume ratio for generalized depolarizing channels.Comment: 13 pages, 2 figures incluided V2: homepage address is included in reference V3: version to appear in J. Phys. A: Mathematical and Theoretica
    corecore