75 research outputs found

    Frozen magma lenses below the oceanic crust

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 436 (2005): 1149-1152, doi:10.1038/nature03944.The Earth's oceanic crust crystallizes from magmatic systems generated at mid-ocean ridges. Whereas a single magma body residing within the mid-crust is thought to be responsible for the generation of the upper oceanic crust, it remains unclear if the lower crust is formed from the same magma body, or if it mainly crystallizes from magma lenses located at the base of the crust. Thermal modelling, tomography, compliance and wide-angle seismic studies, supported by geological evidence, suggest the presence of gabbroic-melt accumulations within the Moho transition zone in the vicinity of fast- to intermediate-spreading centres. Until now, however, no reflection images have been obtained of such a structure within the Moho transition zone. Here we show images of groups of Moho transition zone reflection events that resulted from the analysis of approximately 1,500 km of multichannel seismic data collected across the intermediate-spreading-rate Juan de Fuca ridge. From our observations we suggest that gabbro lenses and melt accumulations embedded within dunite or residual mantle peridotite are the most probable cause for the observed reflectivity, thus providing support for the hypothesis that the crust is generated from multiple magma bodies

    Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 460 (2009): 89-93, doi:10.1038/nature08095.The oceanic crust extends over two thirds of the Earth’s solid surface and is generated along mid-ocean ridges from melts derived from the upwelling mantle. The upper and mid crust are constructed by dyking and seafloor eruptions originating from magma accumulated in mid-crustal lenses at the spreading axis, but the style of accretion of the lower oceanic crust is actively debated. Models based on geological and petrological data from ophiolites propose that the lower oceanic crust is accreted from melt sills intruded at multiple levels between the Moho transition zone (MTZ) and the mid-crustal lens, consistent with geophysical studies that suggest the presence of melt within the lower crust. However, seismic images of molten sills within the lower crust have been elusive. To date only seismic reflections from mid-crustal melt lenses and sills within the MTZ have been described, suggesting that melt is efficiently transported through the lower crust. Here we report deep crustal seismic reflections off the southern Juan de Fuca Ridge that we interpret as originating from a molten sill presently accreting the lower oceanic crust. The sill sits 5-6 km beneath the seafloor and 850-900 m above the MTZ, and it is located 1.4-3.2 km off thespreading axis. Our results provide evidence for the existence of low permeability barriers to melt migration within the lower section of modern oceanic crust forming at intermediate-to-fast spreading rates, as inferred from ophiolite studies.This research was supported by grants form the US NSF

    Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 3 (2010): 286-292, doi:10.1038/ngeo824.Mid-ocean ridge crustal accretion occurs continuously at all spreading rates through a combination of magmatic and tectonic processes. Fast to slow spreading ridges are largely built by adding magma to narrowly focused neovolcanic zones. In contrast, ultraslow spreading ridge construction significantly relies on tectonic accretion, which is characterized by thin volcanic crust, emplacement of mantle peridotite directly to the seafloor, and unique seafloor fabrics with variable segmentation patterns. While advances in remote imaging have enhanced our observational understanding of crustal accretion at all spreading rates, temporal information is required in order to quantitatively understand mid-ocean ridge construction. However, temporal information does not exist for ultraslow spreading environments. Here, we utilize U-series eruption ages to investigate crustal accretion at an ultraslow spreading ridge for the first time. Unexpectedly young eruption ages throughout the Southwest Indian ridge rift valley indicate that neovolcanic activity is not confined to the spreading axis, and that magmatic crustal accretion occurs over a wider zone than at faster spreading ridges. These observations not only suggest that crustal accretion at ultraslow spreading ridges is distinct from faster spreading ridges, but also that the magma transport mechanisms may differ as a function of spreading rate.This work was supported by the following NSF grants: NSF-OCE 0137325; NSF-OCE 060383800; and NSF-OCE 062705300

    Sickness behaviour pushed too far – the basis of the syndrome seen in severe protozoal, bacterial and viral diseases and post-trauma

    Get PDF
    Certain distinctive components of the severe systemic inflammatory syndrome are now well-recognized to be common to malaria, sepsis, viral infections, and post-trauma illness. While their connection with cytokines has been appreciated for some time, the constellation of changes that comprise the syndrome has simply been accepted as an empirical observation, with no theory to explain why they should coexist. New data on the effects of the main pro-inflammatory cytokines on the genetic control of sickness behaviour can be extended to provide a rationale for why this syndrome contains many of its accustomed components, such as reversible encephalopathy, gene silencing, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia. It is thus proposed that the pattern of pathology that comprises much of the systemic inflammatory syndrome occurs when one of the usually advantageous roles of pro-inflammatory cytokines – generating sickness behaviour by moderately repressing genes (Dbp, Tef, Hlf, Per1, Per2 and Per3, and the nuclear receptor Rev-erbα) that control circadian rhythm – becomes excessive. Although reversible encephalopathy and gene silencing are severe events with potentially fatal consequences, they can be viewed as having survival advantages through lowering energy demand. In contrast, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia may best be viewed as unfortunate consequences of extreme repression of these same genetic controls when the pro-inflammatory cytokines that cause sickness behaviour are produced excessively. As well as casting a new light on the previously unrationalized coexistence of these aspects of systemic inflammatory diseases, this concept is consistent with the case for a primary role for inflammatory cytokines in their pathogenesis across this range of diseases

    Reciprocal Prospective Relationships Between Loneliness and Weight Status in Late Childhood and Early Adolescence

    Get PDF
    Adolescents who do not conform to weight ideals are vulnerable to disapproval and victimization from peers in school. But, missing from the literature is a prospective examination of weight status and feelings of loneliness that might come from those experiences. Using data from the Québec Longitudinal Study of Child Development, we filled that gap by examining the prospective associations between loneliness and weight status when the sample was aged 10 to 13 years. At ages 10, 12, and 13 years, 1042 youth (572 females; 92% from French speaking homes) reported on their loneliness and were weighed and measured. Family income sufficiency was included in our analyses given its relationship with weight status, but also its possible link with loneliness during early adolescence. The findings showed that (1) weight status and loneliness were not associated concurrently; (2) weight status predicted increases in loneliness from ages 12 to 13 years; and (3) loneliness predicted increases in weight from ages 12 to 13 years among female adolescents, but weight loss among male adolescents. The fact that loneliness was involved in weight gain for females suggests that interventions focused on reducing loneliness and increasing connection with peers during early adolescence could help in reducing obesity

    Wakefulness

    No full text
    • …
    corecore