30 research outputs found

    Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    Get PDF
    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation

    Alterations of Blood Brain Barrier Function in Hyperammonemia: An Overview

    Get PDF
    Ammonia is a neurotoxin involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy, a condition associated with acute—(ALF) or chronic liver failure. This article reviews evidence that apart from directly affecting the metabolism and function of the central nervous system cells, ammonia influences the passage of different molecules across the blood brain barrier (BBB). A brief description is provided of the tight junctions, which couple adjacent cerebral capillary endothelial cells to each other to form the barrier. Ammonia modulates the transcellular passage of low-to medium-size molecules, by affecting their carriers located at the BBB. Ammonia induces interrelated aberrations of the transport of the large neutral amino acids and aromatic amino acids (AAA), whose influx is augmented by exchange with glutamine produced in the course of ammonia detoxification, and maybe also modulated by the extracellularly acting gamma-glutamyl moiety transferring enzyme, gamma-glutamyl-transpeptidase. Impaired AAA transport affects neurotransmission by altering intracerebral synthesis of catecholamines (serotonin and dopamine), and producing “false neurotransmitters” (octopamine and phenylethylamine). Ammonia also modulates BBB transport of the cationic amino acids: the nitric oxide precursor, arginine, and ornithine, which is an ammonia trap, and affects the transport of energy metabolites glucose and creatine. Moreover, ammonia acting either directly or in synergy with liver injury-derived inflammatory cytokines also evokes subtle increases of the transcellular passage of molecules of different size (BBB “leakage”), which appears to be responsible for the vasogenic component of cerebral edema associated with ALF
    corecore