3,585 research outputs found
Bond graph based sensitivity and uncertainty analysis modelling for micro-scale multiphysics robust engineering design
Components within micro-scale engineering systems are often at the limits of commercial miniaturization and this can cause unexpected behavior and variation in performance. As such, modelling and analysis of system robustness plays an important role in product development. Here schematic bond graphs are used as a front end in a sensitivity analysis based strategy for modelling robustness in multiphysics micro-scale engineering systems. As an example, the analysis is applied to a behind-the-ear (BTE) hearing aid.
By using bond graphs to model power flow through components within different physical domains of the hearing aid, a set of differential equations to describe the system dynamics is collated. Based on these equations, sensitivity analysis calculations are used to approximately model the nature and the sources of output uncertainty during system operation. These calculations represent a robustness evaluation of the current hearing aid design and offer a means of identifying potential for improved designs of multiphysics systems by way of key parameter identification
Sensitivity analysis modelling for microscale multiphysics robust engineering design
Sensitivity Analysis (SA) plays an important role in the development of any practical engineering model. It can help to reveal the sources and mechanisms of variability that provide the key to understanding system uncertainty. SA can also be used to calibrate simulation models for closer agreement with experimental results. Robust Engineering Design (RED) seeks to exploit such knowledge in the search for design solutions that are optimal in terms of performance in the face of variability.
Microscale and multiphysics problems present challenges to modelling due to their complexity, which puts increased demands on computational methods. For example, in developing a model of a piezoelectric actuator, the process of calibration is prolonged by the number of parameters that are difficult to verify with the physical device.
In the approach presented in this paper, normalised sensitivity coefficients are determined directly and accurately using the governing finite element model formulation, offering an efficient means of identifying parameters that affect the output of the model, leading to increased accuracy and knowledge of system performance in the face of variability
Experimental and bond graph based sensitivity calculations for micro-scale robust engineering design
Copyright @ 2005 IEEEBond graph modeling and sensitivity analysis are used to provide a platform for the robust design of a small mechatronic device, a behind-the-ear (BTE) hearing aid. Two key components of the device, namely the telecoil and the receiver, are considered. Experimental measurements, bond graph simulation models and analytic sensitivity analysis are used to investigate the interaction between these components in order to gain insight into the effect of component placement on the robustness of the final product
An Agent-Based Model of Mediterranean Agricultural Land-Use/Cover Change for Examining Wildfire Risk
Humans have a long history of activity in Mediterranean Basin landscapes. Spatial heterogeneity in these landscapes hinders our understanding about the impacts of changes in human activity on ecological processes, such as wildfire. The use of spatially-explicit models that simulate processes at fine scales should aid the investigation of spatial patterns at the broader, landscape scale. Here, we present an agent-based model of agricultural land-use decision-making to examine the importance of land tenure and land use on future land cover. The model considers two 'types' of land-use decision-making agent with differing perspectives; 'commercial' agents that are perfectly economically rational, and 'traditional' agents that represent part-time or 'traditional' farmers that manage their land because of its cultural, rather than economic, value. The structure of the model is described and results are presented for various scenarios of initial landscape configuration. Land-use/cover maps produced by the model are used to examine how wildfire risk changes for each scenario. Results indicate that land tenure configuration influences trajectories of land use change. However, simulations for various initial land-use configurations and compositions converge to similar states when land-tenure structure is held constant. For the scenarios considered, mean wildfire risk increases relative to the observed landscape. Increases in wildfire risk are not spatially uniform however, varying according to the composition and configuration of land use types. These unexpected spatial variations in wildfire risk highlight the advantages of using a spatially-explicit agent-based model of land use/cover change.Land Use/Cover Change, Land Tenure, Wildfire, Mediterranean-Type Ecosystem, Agriculture, Spatial Heterogeneity
Hall coefficient anomaly in the low-temperature high-field phase of Sr3Ru2O7
We report a study of the Hall effect of high-purity Sr3Ru2O7 single crystals. We establish an empirical
correlation between the onset of its unusual low-temperature, high-field phase and a pronounced dip in the fielddependent Hall coefficient. Unlike the order parameter obtained from measurements of anisotropic resistivity,
which is affected by the formation of domains, the Hall effect feature seems to reflect the nature of the ordering
within a single domain. We checked for violations of the Onsager relations for the off-diagonal components
of the resistivity tensor but do not detect any. We compare our observations to those on materials that have
long-wavelength spin structures, and discuss them in relation to a growing body of theoretical work on the nature
of the low-temperature phase in Sr3Ru2O7
Preoperative transcatheter closure of congenital muscular ventricular septal defects.
BackgroundSurgical repair of muscular ventricular septal defects, particularly those associated with complex heart lesions carries a higher risk of reoperation and death than the repair of membranous defects. Closing a muscular defect through an incision in the systemic ventricle may cause late ventricular dysfunction. In a collaborative approach to this problem, we undertook preoperative transcatheter closure of muscular ventricular septal defects remote from the atrioventricular and semilunar valves, followed by the surgical repair of associated conditions.MethodsIn 12 patients selected jointly by a cardiologist and a cardiac surgeon, we attempted preoperative transcatheter umbrella closure of 21 defects. Half the patients had associated complex heart lesions; the others had had pulmonary-artery banding to reduce the amount of left-to-right shunting. Half had severe ventricular septal deficiency.ResultsAll 21 defects were successfully closed without major complications. Subsequent cardiac surgery for associated conditions in 11 of the 12 patients resulted in a mean pulmonary-to-systemic flow ratio of 1.1, indicating minimal residual left-to-right shunting; 1 patient awaited surgical repair. No deaths, reoperations, or late complications have occurred after a follow-up of 7 to 20 months.ConclusionsA collaborative approach using transcatheter closure followed by the surgical repair of associated cardiac lesions may decrease rates of operative mortality, reoperation, and left ventricular dysfunction in patients with muscular ventricular septal defects
Quantum oscillations in the anomalous phase in Sr3Ru2O7
This is the final version. Available from American Physical Society via the DOI in this recordWe report measurements of quantum oscillations detected in the putative nematic phase of Sr3Ru2O7. Improvements in sample purity enabled the resolution of small amplitude de Haas-van Alphen (dHvA) oscillations between two first order metamagnetic transitions delimiting the phase. Two distinct frequencies were observed, whose amplitudes follow the normal Lifshitz-Kosevich profile. Variations of the dHvA frequencies are explained in terms of a chemical potential shift produced by reaching a peak in the density of states, and an anomalous field dependence of the oscillatory amplitude provides information on domains. © 2009 The American Physical Society.Engineering and Physical Sciences Research Council (EPSRC
Quantum oscillations near the metamagnetic transition in Sr3Ru2O7
This is the final version. Available from American Physical Society via the DOI in this recordWe report a detailed investigation of quantum oscillations in Sr 3 Ru2 O7, observed inductively (the de Haas-van Alphen effect) and thermally (the magnetocaloric effect). Working at fields from 3 to 18 T allowed us to straddle the metamagnetic transition region and probe the low- and high-field Fermi liquids. The observed frequencies are strongly field dependent in the vicinity of the metamagnetic transition, and there is evidence for magnetic breakdown. We also present the results of a comprehensive rotation study. The most surprising result concerns the field dependence of the measured quasiparticle masses. Contrary to conclusions previously drawn by some of us as a result of a study performed with a much poorer signal-to-noise ratio, none of the five Fermi-surface branches for which we have good field-dependent data gives evidence for a strong-field dependence of the mass. The implications of these experimental findings are discussed. © 2010 The American Physical Society.Engineering and Physical Sciences Research Council (EPSRC
Application of a genetic risk score to racially diverse type 1 diabetes populations demonstrates the need for diversity in risk-modeling
This is the final version of the article. Available from the publisher via the DOI in this record.Prior studies identified HLA class-II and 57 additional loci as contributors to genetic susceptibility for type 1 diabetes (T1D). We hypothesized that race and/or ethnicity would be contextually important for evaluating genetic risk markers previously identified from Caucasian/European cohorts. We determined the capacity for a combined genetic risk score (GRS) to discriminate disease-risk subgroups in a racially and ethnically diverse cohort from the southeastern U.S. including 637 T1D patients, 46 at-risk relatives having two or more T1D-related autoantibodies (≥2AAb+), 790 first-degree relatives (≤1AAb+), 68 second-degree relatives (≤1 AAb+), and 405 controls. GRS was higher among Caucasian T1D and at-risk subjects versus ≤ 1AAb+ relatives or controls (P < 0.001). GRS receiver operating characteristic AUC (AUROC) for T1D versus controls was 0.86 (P < 0.001, specificity = 73.9%, sensitivity = 83.3%) among all Caucasian subjects and 0.90 for Hispanic Caucasians (P < 0.001, specificity = 86.5%, sensitivity = 84.4%). Age-at-diagnosis negatively correlated with GRS (P < 0.001) and associated with HLA-DR3/DR4 diplotype. Conversely, GRS was less robust (AUROC = 0.75) and did not correlate with age-of-diagnosis for African Americans. Our findings confirm GRS should be further used in Caucasian populations to assign T1D risk for clinical trials designed for biomarker identification and development of personalized treatment strategies. We also highlight the need to develop a GRS model that accommodates racial diversity.Supported by grants from the National Institutes of Health P01 AI42288 (MAA), R01 DK106191
(TMB), UC4 DK104194 (CEM), and from the JDRF Career Development Award (2–2012–280 to TMB). RAO
is supported by a Diabetes UK Harry Keen Fellowship. DJP is supported by the JDRF Postdoctoral Fellowship
Award (2-PDF-2016-207-A-N)
- …