7,219 research outputs found

    Optimism moderates psychophysiological responses to stress in older people with Type 2 diabetes

    Get PDF
    Optimism is thought to be beneficial for health, and these effects may be mediated through modifications in psychophysiological stress reactivity. Type 2 diabetes (T2D) is associated with reduced cardiovascular responses to stress and heightened cortisol over the day. This study assessed the relationships between optimism, stress responsivity, and daily cortisol output in people with T2D. A total of 140 participants with T2D were exposed to laboratory stress. Heart rate (HR), systolic (SBP), diastolic blood pressure (DBP), and cortisol were measured throughout the session. Cortisol output over the day was also assessed. Optimism and self-reported health were measured using the revised Life Orientation Test and the Short Form Health Survey. Optimism was associated with heightened SBP and DBP stress reactivity (ps  .180). Low optimism was related to poorer self-reported physical and mental health (ps < .01). Optimism could have a protective role in modulating stress-related autonomic and neuroendocrine dysregulation in people with T2D

    Nanotechnology in dentistry: prevention, diagnosis, and therapy

    Get PDF
    Ensanya Ali Abou Neel,1&ndash;3 Laurent Bozec,3 Roman A Perez,4,5 Hae-Won Kim,4&ndash;6 Jonathan C Knowles3,5 1Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia; 2Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt; 3UCL Eastman Dental Institute, Biomaterials and Tissue Engineering, London, UK; 4Institute of Tissue Regenerative Engineering (ITREN), 5Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, 6Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea Abstract: Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation. Keywords: nanotechnology, nanointerfaces, biofilm-related oral diseases, tissue engineering, drug delivery, toxicit

    A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials

    Get PDF
    Angiogenesis is considered an important issue in the development of biomaterials for the successful regeneration of tissues including bone. While growth factors are commonly used with biomaterials to promote angiogenesis, some ions released from biomaterials can also contribute to angiogenic events. Many silica-based biomaterials have been widely used for the repair and regeneration of tissues, mainly hard tissues such as bone and tooth structure. They have shown excellent performance in bone formation by stimulating angiogenesis. The release of silicate and others (Co and Cu ions) has therefore been implicated to play critical roles in the angiogenesis process. In this short review, we highlight the in vitro and in vivo findings of angiogenesis (and the related bone formation) stimulated by the various types of silicon-containing biomaterials where silicate ions released might play essential roles. We discuss further the possible molecular mechanisms underlying in the ion-induced angiogenic events

    Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus Aureus

    Full text link
    Background: YlbF and YmcA are two essential proteins for the formation of biofilm, sporulation, and competence in Bacillus subtilis. In these two proteins, a new protein domain called com_ylbF was recently discovered, but its role and protein function has not yet been established. Objective: In this study, we identified and performed an “in silico” structural analysis of the YheA protein, another com_ylbF-containing protein, in the opportunistic pathogen Staphylococcus aureus. Methods: The search of the yheA gene was performed using BLAST-P and tBLASn algorithms. The three-dimensional (3D) models of YheA, as well as YlbF and YmcA proteins, were built using the I-TASSER and Quark programs. The identification of the native YheA in Staphylococcus aureus was carried out through chromatography using the FPLC system. Results: We found that YheA protein is more widely distributed in Gram-positive bacteria than YlbF and YmcA. Two new and important characteristics for YheA and other com_ylbF-containing proteins were found: a highly conserved 3D structure and the presence of a putative conserved motif located in the central region of the domain, which could be involved in its function. Additionally, we established that Staphylococcus aureus expresses YheA protein in both planktonic growth and biofilm. Finally, we suggest renaming YheA as glutamine-rich protein (Qrp) in S. aureus. Conclusion: The Grp (YheA), YlbF, and YmcA proteins adopt a highly conserved three-dimensional structure, harboring a protein-specific putative motif within the com_ylbF domain, which possibly favors the interaction with their substrates. Finally, Staphylococcus aureus expresses the Grp (YheA) protein in both planktonic and biofilm growth. </jats:sec

    The Role of Hydrophobic Nodes in the Dynamics of Class A beta-Lactamases

    Get PDF
    Class A β-lactamases are known for being able to rapidly gain broad spectrum catalytic efficiency against most β-lactamase inhibitor combinations as a result of elusively minor point mutations. The evolution in class A β-lactamases occurs through optimisation of their dynamic phenotypes at different timescales. At long-timescales, certain conformations are more catalytically permissive than others while at the short timescales, fine-grained optimisation of free energy barriers can improve efficiency in ligand processing by the active site. Free energy barriers, which define all coordinated movements, depend on the flexibility of the secondary structural elements. The most highly conserved residues in class A β-lactamases are hydrophobic nodes that stabilize the core. To assess how the stable hydrophobic core is linked to the structural dynamics of the active site, we carried out adaptively sampled molecular dynamics (MD) simulations in four representative class A β-lactamases (KPC-2, SME-1, TEM-1, and SHV-1). Using Markov State Models (MSM) and unsupervised deep learning, we show that the dynamics of the hydrophobic nodes is used as a metastable relay of kinetic information within the core and is coupled with the catalytically permissive conformation of the active site environment. Our results collectively demonstrate that the class A enzymes described here, share several important dynamic similarities and the hydrophobic nodes comprise of an informative set of dynamic variables in representative class A β-lactamases

    Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds

    Get PDF
    Promoting angiogenesis is a key strategy for stimulating the repair of damaged tissues, including bone. Among other proangiogenic factors, ions have recently been considered a potent element that can be incorporated into biomaterials and then released at therapeutic doses. Silicate-based biomaterials have been reported to induce neovascularization through vascular endothelial growth factor signaling pathway, potentiating acceleration of bone regeneration. Here, we designed a silicate-shelled hydrogel fiber scaffold with a hard/soft layered structure to investigate the possibility of silicate coating on biopolymer for enhancing biological properties. An alginate hydrogel was injected to form a fiber scaffold with shape-tunability that was then coated with a thin silicate layer with various sol-gel compositions. The silicate/alginate scaffold could release calcium and silicate ions, and in particular, silicate ion release was highly sustainable for over one week at therapeutically relevant levels. The ionic release was highly effective in stimulating the mRNA expression of angiogenic markers (VEGF, KDR, eNOS, bFGF, and HIF1-α) in endothelial cells (HUVECs). Moreover, the in vitro tubular networking of cells was significantly enhanced (1.5 times). In vivo implantation in subcutaneous tissue revealed more pronounced blood vessel formation around the silicate-shelled scaffolds than around silicate-free scaffolds. The presence of a silicate shell was also shown to accelerate acellular mineral (hydroxyapatite) formation. The cellular osteogenesis potential of the silicate/alginate scaffold was further proven by the enhanced expression of osteogenic genes (Col1a1, ALP and OCN). When implanted in a rat calvarium defect, the silicate-shelled scaffold demonstrated significantly improved bone formation (2-3 times higher in bone volume and density) with a concurrent sign of proangiogenesis. This work highlights that the surface-layering of silicate composition is an effective approach for improving the bone regeneration capacity of polymeric hydrogel scaffolds by stimulating ion-induced angiogenesis and providing bone bioactivity to the surface

    The morbidity of urethral stricture disease among male Medicare beneficiaries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To date, the morbidity of urethral stricture disease among American men has not been analyzed using national datasets. We sought to analyze the morbidity of urethral stricture disease by measuring the rates of urinary tract infections and urinary incontinence among men with a diagnosis of urethral stricture.</p> <p>Methods</p> <p>We analyzed Medicare claims data for 1992, 1995, 1998, and 2001 to estimate the rate of dual diagnoses of urethral stricture with urinary tract infection and with urinary incontinence occurring in the same year among a 5% sample of beneficiaries. Male Medicare beneficiaries receiving co-incident ICD-9 codes indicating diagnoses of urethral stricture and either urinary tract infection or urinary incontinence within the same year were counted.</p> <p>Results</p> <p>The percentage of male patients with a diagnosis of urethral stricture who also were diagnosed with a urinary tract infection was 42% in 2001, an increase from 35% in 1992. Eleven percent of male Medicare beneficiaries with urethral stricture disease in 2001 were diagnosed with urinary incontinence in the same year. This represents an increase from 8% in 1992.</p> <p>Conclusions</p> <p>Among male Medicare beneficiaries diagnosed with urethral stricture disease in 2001, 42% were also diagnosed with a urinary tract infection, and 11% with incontinence. Although the overall incidence of stricture disease decreased over this time period, these rates of dual diagnoses increased from 1992 to 2001. Our findings shed light into the health burden of stricture disease on American men. In order to decrease the morbidity of stricture disease, early definitive management of strictures is warranted.</p

    www.hicn.org Wartime Institutions: A Research Agenda

    Get PDF
    agreed to share their views and histories with us. 1 Understanding the choices of civilians and combatants is crucial to our research on civil war and post-conflict reconstruction. We want to know, for example, why people join rebels and militias, why families decide to flee, why combatants kill, how they expand to new territories, or why locals support or boycott counterinsurgency operations. Even when we ask questions about macro-level outcomes such as the duration of war, the stability of peace agreements, or the effects of peace keeping operations, our capacity to theorize and interpret empirical results depends at least partially on our assumptions about how actors make decisions on the ground. Despite the general agreement that institutions—understood as rules that structure human interaction—shape behavior, the study of how civilians and combatants make choices in war zones has, for the most part, neglected the role of wartime institutions. Overlooking institutions in the analysis of individual and collective behavior would be astonishing in any field in political science; however, it has endured in civil war studies perhaps because war is assumed to be chaotic and anarchic, as the widespread use o

    First Report and Comparative Genomics Analysis of a blaOXA-244-Harboring Escherichia coli Isolate Recovered in the American Continent

    Full text link
    The carbapenemase OXA-244 is a derivate of OXA-48, and its detection is very difficult in laboratories. Here, we report the identification and genomic analysis of an Escherichia coli isolate (28Eco12) harboring the blaOXA-244 gene identified in Colombia, South America. The 28Eco12 isolate was identified during a retrospective study, and it was recovered from a patient treated in Colombia. The complete nucleotide sequence was established using the PacBio platform. A comparative genomics analysis with other blaOXA-244–harboring Escherichia coli strains was performed. The 28Eco12 isolate belonged to sequence type (ST) 38, and its genome was composed of two molecules, a chromosome of 5,343,367 bp and a plasmid of 92,027 bp, which belonged to the incompatibility group IncY and did not harbor resistance genes. The blaOXA-244 gene was chromosomally encoded and mobilized by an ISR1-related Tn6237 composite transposon. Notably, this transposon was inserted and located within a new genomic island. To our knowledge, this is the first report of a blaOXA-244–harboring Escherichia coli isolate in America. Our results suggest that the introduction of the OXA-244-producing E. coli isolate was through clonal expansion of the ST38 pandemic clone. Other isolates producing OXA-244 could be circulating silently in America.</jats:p

    First complete Providencia rettgeri genome sequence, the NDM-1-producing clinical strain RB151

    Full text link
    © 2017 Marquez-Ortiz et al. Providencia rettgeri is an opportunistic bacterial pathogen of clinical significance due to its association with urinary tract infections and multidrug resistance. Here, we report the first complete genome sequence of P. rettgeri. The genome of strain RB151 consists of a 4.8-Mbp chromosome and a 108-kbp blaNDM-1-positive plasmid
    • …
    corecore