207 research outputs found

    Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications - A correlational study

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Porous ZnO/C nanocomposites derived from 3 different Zinc based metal-organic frameworks (MOFs) including MOF-5, MOF-74 and ZIF-8, were prepared at high temperature under water-steam atmosphere and their performances in photocatalytic H 2 evolution reaction (HER) and photodegradation of organic dye pollutants were evaluated. The formation mechanism from MOF precursors, the structural properties, morphologies, compositions and textural properties of the derived ZnO/C composites were fully investigated based on different characterization techniques and the correlation between the precursors and the derived composites was discussed. It is evident that MOF precursors determine the crystalline structures, doping profiles, thermal stabilities and metal oxide-carbon weight percentage ratios of the resulting composites. The correlation between MOFs and their derived nanocomposites indicates that different parameters play unalike roles in photocatalytic performances. The desired properties can be tuned by selecting appropriate MOF precursors. MOF-5 derived porous ZnO/C nanocomposite not only exhibits the highest photocatalytic dye degradation activity under visible light among these MOFs, but also outperforms those derived from MOF-74 and ZIF-8 up to 9 and 4 times in photocatalytic HER respectively. This study offers simple and environmentally friendly approaches to further develop new homogeneously dispersed functional metal oxide/carbon composites for various energy and environment-related applications.Engineering and Physical Sciences Research Council (EPSRC)European Commissio

    Prevalence of HCV and HIV infections in 2005-Earthquake-affected areas of Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>On October 8, 2005, an earthquake of magnitude 7.6 hit the Northern parts of Pakistan. In the post-earthquake scenario, overcrowding, improper sewage disposal, contamination of food and drinking water, hasty surgical procedures, and unscreened blood transfusions to earthquake victims most likely promotes the spread of infections already prevalent in the area.</p> <p>Objective</p> <p>The objective of the study reported here was to determine the prevalence of Human Immunodeficiency and Hepatitis C viruses (respectively, HIV and HCV) in the earthquake-affected communities of Pakistan. The samples were analyzed 2 months and then again 11 months after the earthquake to estimate the burden of HIV and HCV in these areas, and to determine any rise in the prevalence of these viral infections as a result of the earthquake.</p> <p>Methods</p> <p>Blood samples were initially collected during December, 2005 to March 2006, from 245 inhabitants of the earthquake-affected areas. These samples were screened for HCV and HIV, using immunochromatography and Enzyme-Linked Immuno-Sorbent Assay (ELISA).</p> <p>Results</p> <p>Out of 245 samples tested, 8 (3.26%) were found positive for HCV, and 0 (0.0%) for HIV, indicating the existence of HCV infection in the earthquake-stricken areas. The same methods were used to analyze the samples collected in the second round of screening in the same area, in September, 2006 – 11 months after the earthquake. This time 290 blood samples were collected, out of which 16 (5.51%) samples were positive for HCV, and 0 for HIV.</p> <p>Conclusion</p> <p>A slightly higher prevalence of HCV was recorded 11 months after the earthquake; this increase, however, was not statistically significant. None of the study participants was found HIV-infected.</p

    Pride and confidence at work: potential predictors of occupational health in a hospital setting

    Get PDF
    BACKGROUND: This study focuses on determinants of a healthy work environment in two departments in a Swedish university hospital. The study is based on previously conducted longitudinal studies at the hospital (1994–2001), concerning working conditions and health outcomes among health care personnel in conjunction with downsizing processes. Overall, there was a general negative trend in relation to mental health, as well as long-term sick leave during the study period. The two departments chosen for the current study differed from the general hospital trend in that they showed stable health development. The aim of the study was to identify and analyse experiential determinants of healthy working conditions. METHODS: Thematic open-ended interviews were carried out with seventeen managers and key informants, representing different groups of co-workers in the two departments. The interviews were transcribed verbatim and an inductive content analysis was made. RESULTS: In the two studied departments the respondents perceived that it was advantageous to belong to a small department, and to work in cooperation-oriented care. The management approaches described by both managers and co-workers could be interpreted as transformational, due to a strain of visionary, delegating, motivating, confirmative, supportive attitudes and a strongly expressed solution-oriented attitude. The daily work included integrated learning activities. The existing organisational conditions, approaches and attitudes promoted tendencies towards a work climate characterised by trust, team spirit and professionalism. In the description of the themes organisational conditions, approaches and climate, two core determinants, work-pride and confidence, for healthy working conditions were interpreted. Our core determinants augment the well-established concepts: manageability, comprehensiveness and meaningfulness. These favourable conditions seem to function as a buffer against the general negative effects of downsizing observed elsewhere in the hospital, and in the literature. CONCLUSION: Research illuminating health-promoting aspects is rather unusual. This study could be seen as explorative. The themes and core dimensions we found could be used as a basis for further intervention studies in similar health-care settings. The result could also be used in future health promotion studies in larger populations. One of the first steps in such a strategy is to formulate relevant questions, and we consider that this study contributes to this

    Hydrodynamic Regulation of Monocyte Inflammatory Response to an Intracellular Pathogen

    Get PDF
    Systemic bacterial infections elicit inflammatory response that promotes acute or chronic complications such as sepsis, arthritis or atherosclerosis. Of interest, cells in circulation experience hydrodynamic shear forces, which have been shown to be a potent regulator of cellular function in the vasculature and play an important role in maintaining tissue homeostasis. In this study, we have examined the effect of shear forces due to blood flow in modulating the inflammatory response of cells to infection. Using an in vitro model, we analyzed the effects of physiological levels of shear stress on the inflammatory response of monocytes infected with chlamydia, an intracellular pathogen which causes bronchitis and is implicated in the development of atherosclerosis. We found that chlamydial infection alters the morphology of monocytes and trigger the release of pro-inflammatory cytokines TNF-α, IL-8, IL-1β and IL-6. We also found that the exposure of chlamydia-infected monocytes to short durations of arterial shear stress significantly enhances the secretion of cytokines in a time-dependent manner and the expression of surface adhesion molecule ICAM-1. As a functional consequence, infection and shear stress increased monocyte adhesion to endothelial cells under flow and in the activation and aggregation of platelets. Overall, our study demonstrates that shear stress enhances the inflammatory response of monocytes to infection, suggesting that mechanical forces may contribute to disease pathophysiology. These results provide a novel perspective on our understanding of systemic infection and inflammation

    Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation.

    Get PDF
    Identifying the forces that drive proteins to misfold and aggregate, rather than to fold into their functional states, is fundamental to our understanding of living systems and to our ability to combat protein deposition disorders such as Alzheimer's disease and the spongiform encephalopathies. We report here the finding that the balance between hydrophobic and hydrogen bonding interactions is different for proteins in the processes of folding to their native states and misfolding to the alternative amyloid structures. We find that the minima of the protein free energy landscape for folding and misfolding tend to be respectively dominated by hydrophobic and by hydrogen bonding interactions. These results characterise the nature of the interactions that determine the competition between folding and misfolding of proteins by revealing that the stability of native proteins is primarily determined by hydrophobic interactions between side-chains, while the stability of amyloid fibrils depends more on backbone intermolecular hydrogen bonding interactions

    Functional Cure of SIVagm Infection in Rhesus Macaques Results in Complete Recovery of CD4+ T Cells and Is Reverted by CD8+ Cell Depletion

    Get PDF
    Understanding the mechanism of infection control in elite controllers (EC) may shed light on the correlates of control of disease progression in HIV infection. However, limitations have prevented a clear understanding of the mechanisms of elite controlled infection, as these studies can only be performed at randomly selected late time points in infection, after control is achieved, and the access to tissues is limited. We report that SIVagm infection is elite-controlled in rhesus macaques (RMs) and therefore can be used as an animal model for EC HIV infection. A robust acute infection, with high levels of viral replication and dramatic mucosal CD4+ T cell depletion, similar to pathogenic HIV-1/SIV infections of humans and RMs, was followed by complete and durable control of SIVagm replication, defined as: undetectable VLs in blood and tissues beginning 72 to 90 days postinoculation (pi) and continuing at least 4 years; seroreversion; progressive recovery of mucosal CD4+ T cells, with complete recovery by 4 years pi; normal levels of T cell immune activation, proliferation, and apoptosis; and no disease progression. This “functional cure” of SIVagm infection in RMs could be reverted after 4 years of control of infection by depleting CD8 cells, which resulted in transient rebounds of VLs, thus suggesting that control may be at least in part immune mediated. Viral control was independent of MHC, partial APOBEC restriction was not involved in SIVagm control in RMs and Trim5 genotypes did not impact viral replication. This new animal model of EC lentiviral infection, in which complete control can be predicted in all cases, permits research on the early events of infection in blood and tissues, before the defining characteristics of EC are evident and when host factors are actively driving the infection towards the EC status

    Large Scale Gene Expression Profiles of Regenerating Inner Ear Sensory Epithelia

    Get PDF
    Loss of inner ear sensory hair cells (HC) is a leading cause of human hearing loss and balance disorders. Unlike mammals, many lower vertebrates can regenerate these cells. We used cross-species microarrays to examine this process in the avian inner ear. Specifically, changes in expression of over 1700 transcription factor (TF) genes were investigated in hair cells of auditory and vestibular organs following treatment with two different damaging agents and regeneration in vitro. Multiple components of seven distinct known signaling pathways were clearly identifiable: TGFβ, PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1. Numerous components of apoptotic and cell cycle control pathways were differentially expressed, including p27KIP and TFs that regulate its expression. A comparison of expression trends across tissues and treatments revealed identical patterns of expression that occurred at identical times during regenerative proliferation. Network analysis of the patterns of gene expression in this large dataset also revealed the additional presence of many components (and possible network interactions) of estrogen receptor signaling, circadian rhythm genes and parts of the polycomb complex (among others). Equal numbers of differentially expressed genes were identified that have not yet been placed into any known pathway. Specific time points and tissues also exhibited interesting differences: For example, 45 zinc finger genes were specifically up-regulated at later stages of cochlear regeneration. These results are the first of their kind and should provide the starting point for more detailed investigations of the role of these many pathways in HC recovery, and for a description of their possible interactions
    corecore