740 research outputs found

    The Fermi GeV excess: challenges for the dark matter interpretation

    Get PDF
    One of the most exciting recent results in the field of dark matter indirect searches has been the discovery of an excess emission in gamma rays from the Galactic centre above the standard astrophysical background. We show that current hydrodynamic simulations, namely simulated Milky Way-like galaxies within the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) project, challenge the possibility to interpret the GeV excess as due to annihilation of dark matter particles in the halo if the Milky Way

    Simulated Milky Way analogues: implications for dark matter direct searches

    Get PDF
    We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the eagle and apostle projects. We identify MilkyWay analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best _t Maxwellian distribution (with peak speed of 223 { 289 km=s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved

    Motivated proteins: a web application for studying small three-dimensional protein motifs

    Get PDF
    <b>BACKGROUND:</b> Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are alphabeta-motifs, asx-motifs, asx-turns, beta-bulges, beta-bulge loops, beta-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns.We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. <b>DESCRIPTION:</b> The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. <b>CONCLUSION:</b> Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schem

    Does a 'direct' transfer protocol reduce time to coronary angiography for patients with non-ST-elevation acute coronary syndromes? A prospective observational study.

    Get PDF
    OBJECTIVE: National guidelines recommend 'early' coronary angiography within 96 h of presentation for patients with non-ST elevation acute coronary syndromes (NSTE-ACS). Most patients with NSTE-ACS present to their district general hospital (DGH), and await transfer to the regional cardiac centre for angiography. This care model has inherent time delays, and delivery of timely angiography is problematic. The objective of this study was to assess a novel clinical care pathway for the management of NSTE-ACS, known locally as the Heart Attack Centre-Extension or HAC-X, designed to rapidly identify patients with NSTE-ACS while in DGH emergency departments (ED) and facilitate transfer to the regional interventional centre for 'early' coronary angiography. METHODS: This was an observational study of 702 patients divided into two groups; 391 patients treated before the instigation of the HAC-X pathway (Pre-HAC-X), and 311 patients treated via the novel pathway (Post-HAC-X). Our primary study end point was time from ED admission to coronary angiography. We also assessed the length of hospital stay. RESULTS: Median time from ED admission to coronary angiography was 7.2 (IQR 5.1-10.2) days pre-HAC-X compared to 1.0 (IQR 0.7-2.0) day post-HAC-X (p<0.001). Median length of hospital stay was 3.0 (IQR 2.0-6.0) days post-HAC-X v 9.0 (IQR 6.0-14.0) days pre-HAC-X (p<0.0005). This equates to a reduction of six hospital bed days per NSTE-ACS admission. CONCLUSIONS: The introduction of this novel care pathway was associated with significant reductions in time to angiography and in total hospital bed occupancy for patients with NSTE-ACS

    Autofix for backward-fit sidechains: using MolProbity and real-space refinement to put misfits in their place

    Get PDF
    Misfit sidechains in protein crystal structures are a stumbling block in using those structures to direct further scientific inference. Problems due to surface disorder and poor electron density are very difficult to address, but a large class of systematic errors are quite common even in well-ordered regions, resulting in sidechains fit backwards into local density in predictable ways. The MolProbity web site is effective at diagnosing such errors, and can perform reliable automated correction of a few special cases such as 180° flips of Asn or Gln sidechain amides, using all-atom contacts and H-bond networks. However, most at-risk residues involve tetrahedral geometry, and their valid correction requires rigorous evaluation of sidechain movement and sometimes backbone shift. The current work extends the benefits of robust automated correction to more sidechain types. The Autofix method identifies candidate systematic, flipped-over errors in Leu, Thr, Val, and Arg using MolProbity quality statistics, proposes a corrected position using real-space refinement with rotamer selection in Coot, and accepts or rejects the correction based on improvement in MolProbity criteria and on χ angle change. Criteria are chosen conservatively, after examining many individual results, to ensure valid correction. To test this method, Autofix was run and analyzed for 945 representative PDB files and on the 50S ribosomal subunit of file 1YHQ. Over 40% of Leu, Val, and Thr outliers and 15% of Arg outliers were successfully corrected, resulting in a total of 3,679 corrected sidechains, or 4 per structure on average. Summary Sentences: A common class of misfit sidechains in protein crystal structures is due to systematic errors that place the sidechain backwards into the local electron density. A fully automated method called “Autofix” identifies such errors for Leu, Val, Thr, and Arg and corrects over one third of them, using MolProbity validation criteria and Coot real-space refinement of rotamers

    Zinc Overload Enhances APP Cleavage and Aβ Deposition in the Alzheimer Mouse Brain

    Get PDF
    BACKGROUND: Abnormal zinc homeostasis is involved in β-amyloid (Aβ) plaque formation and, therefore, the zinc load is a contributing factor in Alzheimer's disease (AD). However, the involvement of zinc in amyloid precursor protein (APP) processing and Aβ deposition has not been well established in AD animal models in vivo. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, APP and presenilin 1 (PS1) double transgenic mice were treated with a high dose of zinc (20 mg/ml ZnSO4 in drinking water). This zinc treatment increased APP expression, enhanced amyloidogenic APP cleavage and Aβ deposition, and impaired spatial learning and memory in the transgenic mice. We further examined the effects of zinc overload on APP processing in SHSY-5Y cells overexpressing human APPsw. The zinc enhancement of APP expression and cleavage was further confirmed in vitro. CONCLUSIONS/SIGNIFICANCE: The present data indicate that excess zinc exposure could be a risk factor for AD pathological processes, and alteration of zinc homeostasis is a potential strategy for the prevention and treatment of AD

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200

    Seasonal changes in patterns of gene expression in avian song control brain regions.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity
    corecore