1,694 research outputs found

    Making New "New AI" Friends : Designing a Social Robot for Diabetic Children from an Embodied AI Perspective

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Robin is a cognitively and motivationally autonomous affective robot toddler with "robot diabetes" that we have developed to support perceived self-efficacy and emotional wellbeing in children with diabetes by providing them with positive mastery experiences of diabetes management in a playful but realistic and natural interaction context. Underlying the design of Robin is an "Embodied" (formerly also known as "New") Artificial Intelligence approach to robotics. In this paper we discuss the rationale behind the design of Robin to meet the needs of our intended end users (both children and medical staff), and how "New AI" provides a suitable approach to developing a friendly companion that fulfills the therapeutic and affective requirements of our end users beyond other approaches commonly used in assistive robotics and child-robot interaction. Finally, we discuss how our approach permitted our robot to interact with and provide suitable experiences of diabetes management to children with very different social interaction styles.Peer reviewedFinal Published versio

    Scenario-based requirements elicitation for user-centric explainable AI

    Get PDF
    Explainable Artificial Intelligence (XAI) develops technical explanation methods and enable interpretability for human stakeholders on why Artificial Intelligence (AI) and machine learning (ML) models provide certain predictions. However, the trust of those stakeholders into AI models and explanations is still an issue, especially domain experts, who are knowledgeable about their domain but not AI inner workings. Social and user-centric XAI research states it is essential to understand the stakeholder’s requirements to provide explanations tailored to their needs, and enhance their trust in working with AI models. Scenario-based design and requirements elicitation can help bridge the gap between social and operational aspects of a stakeholder early before the adoption of information systems and identify its real problem and practices generating user requirements. Nevertheless, it is still rarely explored the adoption of scenarios in XAI, especially in the domain of fraud detection to supporting experts who are about to work with AI models. We demonstrate the usage of scenario-based requirements elicitation for XAI in a fraud detection context, and develop scenarios derived with experts in banking fraud. We discuss how those scenarios can be adopted to identify user or expert requirements for appropriate explanations in his daily operations and to make decisions on reviewing fraudulent cases in banking. The generalizability of the scenarios for further adoption is validated through a systematic literature review in domains of XAI and visual analytics for fraud detection

    How to do an evaluation: pitfalls and traps

    Get PDF
    The recent literature is replete with papers evaluating computational tools (often those operating on 3D structures) for their performance in a certain set of tasks. Most commonly these papers compare a number of docking tools for their performance in cognate re-docking (pose prediction) and/or virtual screening. Related papers have been published on ligand-based tools: pose prediction by conformer generators and virtual screening using a variety of ligand-based approaches. The reliability of these comparisons is critically affected by a number of factors usually ignored by the authors, including bias in the datasets used in virtual screening, the metrics used to assess performance in virtual screening and pose prediction and errors in crystal structures used
    corecore