120 research outputs found

    Neuroprotective effects of trigonelline in kainic acid-induced epilepsy: Behavioral, biochemical, and functional insights

    Get PDF
    Trigonelline, an alkaloid found in the seeds of Trigonella foenum-graecum L. (fenugreek), has been recognized for its potential in treating various diseases. Notably, trigonelline has demonstrated a neuroprotective impact by reducing intrasynaptosomal calcium levels, inhibiting the production of reactive oxygen species (ROS), and regulating cytokines. Kainic acid, an agonist of kainic acid receptors, is utilized for inducing temporal lobe epilepsy and is a common choice for establishing kainic acid-induced status epilepticus, a widely used epileptic model. The neuroprotective effect of trigonelline in the context of kainic acid-induced epilepsy remains unexplored. This study aimed to induce epilepsy by administering kainic acid (10 mg/kg, single subcutaneous dose) and subsequently evaluate the potential anti-epileptic effect of trigonelline (100 mg/kg, intraperitoneal administration for 14 days). Ethosuccimide (ETX) (187.5 mg/kg) served as the standard drug for comparison. The anti-epileptic effect of trigonelline over a 14-day administration period was examined. Behavioral assessments, such as the Novel Object Recognition (NOR) test, Open Field Test (OFT), and Plus Maze tests, were conducted 2 h after kainic acid administration to investigate spatial and non-spatial acquisition abilities in rats. Additionally, biochemical analysis encompassing intrasynaptosomal calcium levels, LDH activity, serotonin levels, oxidative indicators, and inflammatory cytokines associated with inflammation were evaluated. Trigonelline exhibited significant behavioral improvements by reducing anxiety in open field and plus maze tests, along with an amelioration of memory impairment. Notably, trigonelline substantially lowered intrasynaptosomal calcium levels and LDH activity, indicating its neuroprotective effect by mitigating cytotoxicity and neuronal injury within the hippocampus tissue. Moreover, trigonelline demonstrated a remarkable reduction in inflammatory cytokines and oxidative stress indicators. In summary, this study underscores the potential of trigonelline as an anti-epileptic agent in the context of kainic acid-induced epilepsy. The compound exhibited beneficial effects on behavior, neuroprotection, and inflammation, shedding light on its therapeutic promise for epilepsy management

    Population biology of malaria within the mosquito: density-dependent processes and potential implications for transmission-blocking interventions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The combined effects of multiple density-dependent, regulatory processes may have an important impact on the growth and stability of a population. In a malaria model system, it has been shown that the progression of <it>Plasmodium berghei </it>through <it>Anopheles stephensi </it>and the survival of the mosquito both depend non-linearly on parasite density. These processes regulating the development of the malaria parasite within the mosquito may influence the success of transmission-blocking interventions (TBIs) currently under development.</p> <p>Methods</p> <p>An individual-based stochastic mathematical model is used to investigate the combined impact of these multiple regulatory processes and examine how TBIs, which target different parasite life-stages within the mosquito, may influence overall parasite transmission.</p> <p>Results</p> <p>The best parasite molecular targets will vary between different epidemiological settings. Interventions that reduce ookinete density beneath a threshold level are likely to have auxiliary benefits, as transmission would be further reduced by density-dependent processes that restrict sporogonic development at low parasite densities. TBIs which reduce parasite density but fail to clear the parasite could cause a modest increase in transmission by increasing the number of infectious bites made by a mosquito during its lifetime whilst failing to sufficiently reduce its infectivity. Interventions with a higher variance in efficacy will therefore tend to cause a greater reduction in overall transmission than a TBI with a more uniform effectiveness. Care should be taken when interpreting these results as parasite intensity values in natural parasite-vector combinations of human malaria are likely to be significantly lower than those in this model system.</p> <p>Conclusions</p> <p>A greater understanding of the development of the malaria parasite within the mosquito is required to fully evaluate the impact of TBIs. If parasite-induced vector mortality influenced the population dynamics of <it>Plasmodium </it>species infecting humans in malaria endemic regions, it would be important to quantify the variability and duration of TBI efficacy to ensure that community benefits of control measures are not overestimated.</p

    Paternal Body Mass Index (BMI) Is Associated with Offspring Intrauterine Growth in a Gender Dependent Manner

    Get PDF
    Background: Environmental alternations leading to fetal programming of cardiovascular diseases in later life have been attributed to maternal factors. However, animal studies showed that paternal obesity may program cardio-metabolic diseases in the offspring. In the current study we tested the hypothesis that paternal BMI may be associated with fetal growth. Methods and Results: We analyzed the relationship between paternal body mass index (BMI) and birth weight, ultrasound parameters describing the newborn’s body shape as well as parameters describing the newborns endocrine system such as cortisol, aldosterone, renin activity and fetal glycated serum protein in a birth cohort of 899 father/mother/child triplets. Since fetal programming is an offspring sex specific process, male and female offspring were analyzed separately. Multivariable regression analyses considering maternal BMI, paternal and maternal age, hypertension during pregnancy, maternal total glycated serum protein, parity and either gestational age (for birth weight) or time of ultrasound investigation (for ultrasound parameters) as confounding showed that paternal BMI is associated with growth of the male but not female offspring. Paternal BMI correlated with birth parameters of male offspring only: birth weight; biparietal diameter, head circumference; abdominal diameter, abdominal circumference; and pectoral diameter. Cortisol was likewise significantly correlated with paternal BMI in male newborns only

    Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    Get PDF
    BACKGROUND: Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. RESULTS: In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. CONCLUSION: The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity

    Improved cooling capacity of a solar heat driven adsorption chiller

    Full text link
    © 2019 The Authors. This paper discusses two investigations which indicate the benefit of exploiting multiple adsorption containers to increase the cooling energy output of a limited supply of solar heat. First, the optimum working conditions on the output of a solar-powered 3-bed adsorption cooling scheme working in a series and secondly, the performance of a new parallel system of 4-beds has been investigated. It is seen that especially when the source of heat is limited, the output of solar assisted adsorption cooler can be enhanced if the total amount of adsorbent can be distributed in three identical small adsorption beds. As a continuation of the study with multiple beds, the performance of a newly proposed cooling unit with 4-beds has also been studied. This parallel system of 4-beds is considered in such a way that, when one conventional 2-bed chiller is in adsorption/desorption mode then the other chiller is in the preheat/pre-cool mode and the system goes on alternately. Both of these chillers are linked with a single evaporator and condenser, resulting in a continuous evaporation and condensation process. Both of these new systems with multiple beds can utilize maximum entropy as exploits a longer precool time and improves specific cooling capacity (SCC)

    Controlled electroactive release from solid-state conductive elastomer electrodes

    Get PDF
    This work highlights the development of a conductive elastomer (CE) based electrophoretic platform that enables the transfer of charged molecules from a solid-state CE electrode directly to targeted tissues. Using an elastomer-based electrode containing poly (3,4-ethylenedioxythiophene) nanowires, controlled electrophoretic delivery of methylene blue (MB) and fluorescein (FLSC) was achieved with applied voltage. Electroactive release of positively charged MB and negatively charged FLSC achieved 33.19 ± 6.47 μg release of MB and 22.36 ± 3.05 μg release of FLSC, a 24 and 20-fold increase in comparison to inhibitory voltages over 1 h. Additionally, selective, and sequential release of the two oppositely charged molecules from a single CE device was demonstrated, showing the potential of this device to be used in multi-drug treatments
    corecore