
RESEARCH ARTICLE Open Access

Potential for evolution of complex defense
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Abstract

Background: Host resistance and viral pathogenicity are determined by molecular interactions that are part of the
evolutionary arms race between viruses and their hosts. Viruses are obligate intracellular parasites and entry to the
host cell is the first step of any virus infection. Commonly, viruses enter host cells by binding cell surface receptors.
We adopt a computational modeling approach to study the evolution of the first infection step, where we consider
two possible levels of resistance mechanism: at the level of the binding interaction between the host receptor and
a virus binding protein, and at the level of receptor protein expression where we use a standard gene regulatory
network model. At the population level we adopted the Susceptible-Infected-Susceptible (SIS) model. We used our
multi-scale model to understand what conditions might determine the balance between use of resistance
mechanisms at the two different levels.

Results: We explored a range of different conditions (model parameters) that affect host evolutionary dynamics
and, in particular, the balance between the use of different resistance mechanisms. These conditions include the
complexity of the receptor binding protein-protein interaction, selection pressure on the host population
(pathogenicity), and the number of expressed cell-surface receptors. In particular, we found that as the receptor
binding complexity (understood as the number of amino acids involved in the interaction between the virus entry
protein and the host receptor) increases, viruses tend to become specialists and target one specific receptor. At the
same time, on the host side, the potential for resistance shifts from the changes at the level of receptor binding
(protein-protein) interaction towards changes at the level of gene regulation, suggesting a mechanism for
increased biological complexity.

Conclusions: Host resistance and viral pathogenicity depend on quite different evolutionary conditions. Viruses
may evolve cell entry strategies that use small receptor binding regions, represented by low complexity binding in
our model. Our modeling results suggest that if the virus adopts a strategy based on binding to low complexity
sites on the host receptor, the host will select a defense strategy at the protein (receptor) level, rather than at the
level of the regulatory network - a virus-host strategy that appears to have been selected most often in nature.
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Background
Viruses and their hosts engage in evolutionary arms races
in the form of continuous molecular level changes that
determine the mechanisms of infection and defense [1–4].
The evolutionary dynamics are determined in large part
by host susceptibility and viral pathogenicity and ultim-
ately depend on molecular interactions between genes and
their products [5–7]. These relentless evolutionary
arms races drive genetic diversity in both host and
pathogen [2, 8, 9]. More generally, host-pathogen inter-
actions have been proposed as a major factor in the
evolution of biological complexity [10–13].
If we consider humans and other higher organisms as

potential hosts, they will usually evolve at much slower
rates than the viruses that infect them [14]. At the same
time these hosts are highly complex organism and will
usually have far greater resources in terms of potential
defense mechanisms and, more generally, in terms of
genetic information to deal with the viral infections.
Viral entry will commonly involve binding interactions
with receptors on the host cell surface [15, 16]. Most
host cells will have a large number of cell surface recep-
tors, many of which are involved in essential functions
such as detection of signaling molecules (e.g. hormones)
or nutrients, but which can be usurped by viruses as cell
entrance mechanisms [17, 18]. Functional redundancy
among receptors is common. For example, nectins are
cell entry receptors of Herpes simplex virus (HSV) and
are involved in cell adhesion. Functional redundancy
within the nectin family and also other cellular adhesion
proteins can compensate for particular nectins [19]. Also,
in humans there are 19 known chemokine receptors
which activate the same chemokine signaling pathway but
some of these have highly specific receptor binding ligands
whereas others may bind multiple ligands [20]. Interest-
ingly, some viruses produce mimics of chemokine recep-
tor binding ligands, or may encode their own chemokines
and chemokine receptors [21]. For example, CCR5 and
CXCR4 act as co-receptors for HIV-1 entry [22], and the
Respiratory Syncytial Virus (RSV) produces its own ver-
sion of the chemokine CXC3 which binds to the host
receptor CX3CRI, thus facilitating RSV infection [23].
While there are multiple mechanisms of infection and

resistance across many levels, virus entry into the host cell
is the first and essential step that must succeed for a viral
infection to proceed [15, 16]. Thus, preventing virus entry
has been often been the preferred strategy for therapeutic
development [15, 24, 25]. On evolutionary timescales,
hosts can evade receptor-mediated viral entry in several
ways including amino acid changes at the binding sites to
inhibit protein interactions, or by regulation of receptor
gene expression. Several previous studies have provided
evidence of evolutionary arms races at the level of virus-
receptor protein interactions. For example, Transferrin

Receptor-1 (TfR1) is a key regulator of iron uptake in
mammalian cells and is up-regulated when intracellular
iron concentrations are low [17]. However, TfR1 is also
used for cell entry by viruses such as the Mouse mammary
tumor virus (MMTV) and the Machupo virus. Clear
evidence of positive selection has been found both on the
binding sites of TfR1 for MMTV and Machupo virus and
on the corresponding sites in the virus proteins that bind
these [26–29]. Mutations at these residues affect receptor-
binding interactions and change virulence and host
susceptibility, suggesting an ongoing evolutionary arms
race. Regulation of host cell surface receptors can also be
an effective defense strategy against virus entry [24, 25, 30,
31]. For example, there appears to be significant variation
across human bladder cells for mRNA and protein expres-
sion levels of the Coxsackie and Adenovirus Receptor
(CAR) gene, another virus-targeted receptor. Thus, the
T24 bladder cell line has very low CAR expression and is
resistant to virus entry, whereas RT4 cells have high
CAR expression level and are highly susceptible to in-
fection [32]. Thus, regulatory changes affecting cell
surface receptor levels are related to susceptibility to
viral infection. Clearly, however, there may be a trade-
off between reduced receptor expression and the fit-
ness gained by reduced infectivity, which may explain
why there are many more published examples of virus-
receptor coevolution than for receptor expression evo-
lution (virus-receptor coevolution is also easier to
study, so ascertainment bias may also be a factor).
Thus, hosts may adopt different resistance mechanisms

at different system levels, e.g., receptor binding vs regula-
tion. However, little previous research has focused on how
these different levels of defense mechanisms may evolve
in the context of host-pathogen co-evolution. Compu-
tational models such as the gene regulatory network
evolution model (also known as the Wagner model),
that combine a complex genotype-phenotype mapping
(describing a gene regulatory network) with evolution-
ary dynamics have previously been used to address a
range of questions concerned with evolution of bio-
logical complexity [33, 34]. In previous studies, the
gene regulatory network evolution model has been ex-
tended to account for different system levels, including
transcription factor (TF)-DNA binding interactions
[35] and protein-protein interactions (PPI) [36] at the
microscopic level, or between two different populations
[10] at the macroscopic level. These previous studies
[10, 36] showed how robustness and evolvability can
evolve to be distributed across different system levels,
depending on the model conditions. Here, we integrate
protein-protein interactions (virus-receptor binding)
and gene regulatory networks (which control receptor
expression) in the context of an evolutionary model
that represents both host and pathogen populations.
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Viral proteins commonly evolve to mimic receptor
binding sites in order to enter host cells through cell
surface receptors [21, 26–29]. We introduce a model
where the host receptor and the corresponding viral pro-
tein are represented as linear sequences and binding is
quantified by a similarity score, under the assumption that
a close match corresponds to better binding and a higher
probability of viral entry. Hosts can evolve to block viral
entry either via binding site mismatches or by regulatory
changes in receptor protein expression. We further inves-
tigate how hosts evolve resistance to different types of
viruses: specialists (that target a single receptor) vs gener-
alists (that target many receptors). We consider how the
balance between receptor binding and regulation evolves
in the context of host-pathogen co-evolution and the
need for virus to enter the host cell and the host to
block virus entry. More generally, we consider what
evolutionary conditions might drive a shift from protein-
protein interaction towards gene regulation, and thus
increased biological complexity, a key question in the field
of evolutionary biology [37, 38]. Furthermore, because we
specifically consider host-pathogen coevolution, our study
begins to address how complex immune systems may
have evolved.

Methods
Host-virus coevolution model
The individual gene regulatory network (GRN) structure
and gene expression dynamics largely follows the ori-
ginal gene regulatory network evolution model [39–41],
with 3 primary differences: (i) host individuals are repre-
sented by a GRN together with a set of receptor binding
site sequences, (ii) populations follow the dynamics of
an SIS model, and (iii) the selection pressure on hosts is
given by differential survival probability for the offspring
of susceptible vs infected parents and by the rate of
disease-related death for infected hosts as selection on the
hosts arises from the advantage that resistant offspring
have over non-resistant offspring (Additional file 1).
A host GRN is represented as a matrix (W) of size

N ×NTF where N is the total number of genes, which
includes receptor genes (NR) and the transcription fac-
tor genes (NTF) that regulate them. Each element, wij

indicates a regulation of the gene i by a gene product
of the gene j, and can represent activation (wij > 0), in-
hibition (wij < 0), or no regulation (wij = 0). The network
density (c) is a parameter of the model and is defined
as the fraction of nonzero wij elements in the matrix
W. A founder host individual has a randomly assigned W
with a given network density c and with each nonzero wij

element drawn from a Normal distribution, N(0, 1). Each
row i of the matrix W represents the cis-regulatory ele-
ments of the ith genes. The GRN is composed of two sub-
networks. The first sub-network, from the 1st row to the

NTF
th row corresponds to the transcription factor (TF)

genes and the second sub-network, from the NTF + 1
th row

to the last Nth row corresponds to the NR receptor genes.
The expression levels of the N genes at time t are repre-
sented as a vector S(t) where the ith element Si(t) corre-
sponds to the gene expression of ith gene. A sub-vector of
S(t) of TF genes (S1(t) ~ STF(t)) is called STF(t), and a sub-
vector of S(t) of receptor genes (STF + 1(t) ~ SN(t)) is called
SR(t). Initial gene expression S(0) is set as a random binary
vector where 0 corresponds to no gene expression and 1
is for full gene expression. Gene expression levels are up-
dated according to the equation S(t + 1) = Sig(W ⋅ STF(t)),
where Sig xð Þ ¼ 1

1þe−ax a ¼ 100ð Þ is a sigmoid function
which maps values to gene expression levels in the range
(0, 1). Here, 0.5 corresponds to basal (unregulated) gene
expression. When the gene expression dynamics S(t) reach
steady state [34] we simplify gene expression to binary

form by applying the function φ xð Þ ¼ 0; x≤0:5
1; x > 0:5

�
, thus

defining the phenotype Ŝ.
In the model, we assume there is some degree of func-

tional redundancy for cell surface receptors. Among the
total number (NR) of receptors which can be expressed on
the cell surface, a subset (NER) is required to satisfy the
minimum demand for normal host functions. Here we
tested NER = 1 or 3 among NR = 5 receptors. For example,
NER = 1 indicates that expression of any single receptor is
sufficient for host function and any receptor can substitute
for any other. At the other extreme, if NER = 5 then all re-
ceptors must be expressed and there is no functional re-
dundancy. There are multiple examples showing that
different receptors on a host cell can be targeted for virus
entry and also that a single host receptor can be targeted
by different viruses [15, 16]. Hence, offspring individuals
whose phenotypes have fewer expressed receptor genes
than NER (1 ≤NER ≤ NR) are assigned zero fitness since we
assume that this is the minimum required for normal host
cell functions. The expressed receptor genes produce cell
surface receptor proteins that can be targeted by viruses
for entry. Each receptor protein is represented as a binary
vector of length L, where 0 indicates a polar amino acid
and 1 indicates a hydrophobic amino acid. To represent
different receptors on the host cell surface, an amino acid
sequence is assigned to each receptor protein independ-
ently (we avoided having a homogeneous set of initial host
receptor proteins as we found this caused population
decay due to extremely beneficial conditions for the virus
infection). While a host individual is represented with a
GRN together with a set of receptor proteins, each virus is
represented only by the protein used to enter host cells,
represented also as a binary vector of length L.
The initial host population is created in the form of

M clones of a founder individual possessing a randomly
assigned matrix W and set of receptor amino acid
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sequences. The host population iterates through cycles of
reproduction, mutation and stabilizing selection (similarity
to the phenotype of the founder) for 500 time steps in
order to generate genetic diversity within the population
before the viruses are introduced [34]. Under asexual
reproduction each offspring individual is cloned from a
random parent, whereas under sexual reproduction each
offspring has two random parents and inherits genes (pro-
tein sequences and cis-regulatory regions) from either par-
ent randomly assuming free recombination among the
genes. Since each row represents the cis-regulatory region
of each gene, sexual reproduction involves copying each
row of W from either of the parents for all N genes. GRN
mutations change regulatory interactions between genes.
As used previously [41], we allow interaction addition (wij

= 0→wij ≠ 0), deletion (wij ≠ 0→wij = 0), and modifica-
tion (wij =wij

′ ≠ 0→wij =wij
* ≠wij

′ , 0). The mutation fre-
quency per matrix W is μ including addition (ρ), deletion
(ϕ) and modification (δ). ρ and ϕ are set to satisfy Δc ¼ c

t þ 1ð Þ−c tð Þ ¼ μ
N⋅NTF

⋅ ρ 1−c tð Þð Þ−ϕc tð Þf g ¼ 0 so that the

network density (c) remains close to that of the founder.
Before contact with viruses, the host population size is
fixed and hosts evolve under stabilizing selection to be
close to the founder’s gene expression phenotype and
expressed receptor amino acid sequences. Under stabiliz-
ing selection, a host whose phenotype has more than one
gene expression difference is not able to survive. Protein
mutations involve switching between 0 (polar) and 1
(hydrophobic), where the mutation probability is μhp per
set of receptors. Also for the receptor similarity, we mea-

sured a fitness value f ¼ e−
D
σ , where σ = 0.1 (strong selec-

tion) and D¼
X

r∈ER

X
i¼1

L
ar;i−a

f
r;ij j

ERj j⋅L (ER: set of expressed

receptors, |ER|: the number expressed receptors, ar,i: the
ith entry of the amino acid sequence of receptor r, ar,i

f : the
ith entry of the amino acid sequence of the founder recep-
tor r), which is the mean L1 distance from the founder
amino acid sequence for all expressed receptors.
In preparation for the infection phase, two founder vi-

ruses are generated based on protein sequences from
host individuals in order to guarantee a high initial
transmission rate. Specifically, each founder virus is cop-
ied from a receptor protein sequence of a random host,
then mutated using the virus protein mutation rate (μvp
= 0.1 per virus protein). Although we tested a case of lar-
ger initial virus population size including a greater diver-
sity of founder viruses, we could not find a significant
difference from the small initial founder virus population
case in terms of the infection strategy of the virus.
Hence, in this study, we used two founder viruses for all
simulations. Once the host-virus coevolution phase be-
gins, the hosts are divided into susceptible and infected

populations and the host population is no longer under
stabilizing selection, as hosts need to acquire phenotypic
variation to defend against virus entry. Initially all hosts
are susceptible and as the founder viruses infect the
healthy hosts, those hosts are moved to the infected
population. Each individual in the infected group pos-
sesses the virus that caused the infection. From this
point the population evolves under conditions of co-
evolutionary selection and the size of the susceptible (S)
and infected (I) groups is allowed to vary. The suscep-
tible and infected population dynamics are inspired by
the standard SIS model with births and deaths as shown
in the following difference equations:

ΔS ¼ Sðt þ 1Þ−SðtÞ

¼ η⋅b⋅NðtÞ⋅ 1−
NðtÞ
K

� �
−ξ⋅

r
NðtÞ ⋅SðtÞ⋅IðtÞ−λN ⋅SðtÞ þ γ⋅IðtÞ

ð1Þ
ΔI ¼ I t þ 1ð Þ−I tð Þ

¼ ξ⋅
r

N tð Þ ⋅S tð Þ⋅I tð Þ− λN þ λD þ γð Þ⋅I tð Þ ð2Þ

where N(t) = S(t) + I(t),b = growth rate, K = carrying cap-

acity, η ¼ # of survived offspring
# of offspring candidates, r = contact rate, ξ ¼ # of infections

# of contacts

(determined empirically, as described below), r ⋅ ξ = trans-
mission rate, λN = natural death rate, λD = disease re-
lated death rate, γ = recovery rate. The main difference
from the standard ODE SIS model is that ξ and η are de-
termined by the individuals in the population and these
parameter values can change as the population evolves. In
our model, ξ and η are determined through a complex
process that includes random sampling within the popula-
tion and the evaluation of individual phenotypes. The
transmission rate is frequency dependent (i.e., divided by
N(t)), which assumes that a population occupies an area
proportional to its size, i.e., per capita contact rate does
not depend on population density, i.e. assuming a wide
and unrestricted region affected by infectious viruses [42].
We also use standard assumptions of logistic population
growth and that every offspring is initially susceptible. The
difference equations dictate the number of offspring that
need to be generated, the number of contact events be-
tween infected and susceptible hosts, host deaths, and re-
covered hosts at every time step, but because our model is
individual-based, these numeric changes are applied to the
actual populations as follows:

The growth term, η⋅b⋅N tð Þ⋅ 1− N tð Þ
K

� �
, describes the

number of offspring, which are generated via sexual or
asexual reproduction and mutations in GRN and amino
acid sequences are generated as described above. The

term b⋅N tð Þ⋅ 1− N tð Þ
K

� �
is the total number of offspring

candidates who have the stable gene expression and
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express at least NER receptors. As candidates who have
infected parents are less likely to survive, only a frac-
tion of the candidates (η) can actually be added to the
susceptible population. If phenotypes of the offspring
candidates satisfy the criteria of expressing the minimal
number (NER) of receptor genes, and depending on the
survival probability, the candidate may be added to the
susceptible population. The survival probability is 1 if
both parents are susceptible, kI < 1 if both parents are
infected, or kIþ1

2 if only one parent is infected. Therefore

among the b⋅N tð Þ⋅ 1− N tð Þ
K

� �
candidate offspring, only a

fraction η of candidates can be added to the susceptible
population when kI is less than 1. Thus, the parameter
kI determines selection due to viral pathogenicity. For
the infection term, the number of contacts is r

N tð Þ ⋅S tð Þ⋅I
tð Þ. Here, for each contact we choose a random pair of
susceptible and infected individuals. Each infected host
individual contains a single virus that caused the infec-
tion. With each host-virus contact event, the virus mu-
tates the original amino acid sequence at the point of
the infection with mutation rate, μvp = 0.1 per protein.
The virus can bind a host receptor if the percentage of
one-to-one amino acid pairs that match between the
virus and the host receptor exceeds a matching thresh-
old, ϵseqM. If the virus can bind at least one of the
expressed receptors on a susceptible host, then the in-
fection proceeds and the individual moves from the
susceptible to the infected population together with the
virus that infected it, otherwise the susceptible individ-
ual remains in the susceptible population. Successive
infection attempts by the same infected individual will
involve new mutations with each host-virus contact oc-
curs. Thus, virus transmission will depend on the coe-
volving host resistance and pathogen virulence. Also,
note that the fraction of successful infections ξ in the
Eqs. 1 and 2 is determined empirically, rather than as a
given parameter.

Parameters
There are parameters at both the level of population dy-
namics and at the individual level, i.e. governing the
regulatory network and the protein sequences (Table 1).
As described in the main text and in the figures, we
tested a range of parameters including protein binding
site amino acid sequence length (L), the minimum num-
ber of required expressed receptors (NER), host protein
mutation rate (μhp), amino acid matching threshold for
receptor binding ( ϵseqM), offspring survival probability
from both infected parents (kI) and disease-related death
rate (λD) to investigate the effect of parameter changes
on host resistance evolution. Unless otherwise stated, in
the main text figures we used the following parameters:

for the population dynamics model, the number of simula-
tions = 100, initial host population size Minit = 150, initial
virus population size = 2, offspring survival probability from
both infected parents kI = 0.8, amino acid matching thresh-
old for receptor binding ϵseqM = 90 %, carrying capacity K =
1000, growth rate b = 0.15, natural death rate λN = 0.09,
disease-related death rate λD = 0.06, recovery rate γ = 0.2,
host-virus contact rate r = 2. These parameters are chosen
to make steady state host population size large enough to
investigate evolutionary mechanisms. For the GRN and

Table 1 The list of model parameters

Parameter
symbol

Description Values

L Protein binding site amino acid
sequence length

5, 10, 15, 20, 25, 30

μhp Host protein mutation rate per
a set of receptors

0.002, 0.01, 0.05

μvp Virus protein mutation rate 0.1

NTF The number of transcription factor genes 5

NR The number of receptor genes 5

NER The minimum number of required
expressed receptors

1, 3

ϵseqM Amino acid matching threshold for
receptor binding

90 %, 75 %

kI Offspring survival probability from
both infected parents

0.5, 0.8

ξ # of infections
# of contacts Self-determined

during simulations

η # of survived offspring
# of offspring candidates Self-determined

during simulations

K Carrying capacity 1000

Minit Initial host population size 150

b Growth rate 0.15

λN Natural death rate 0.09

λD Disease-related death rate 0.06

γ Recovery rate 0.2

r Host-virus contact rate 2

c Network density 0.4

μ Mutation rate per gene regulatory
network

0.1

ρ Conditional rate of interaction addition
in gene regulatory network

0.028

ϕ Conditional rate of interaction deletion
in gene regulatory network

0. 042

δ Conditional rate of interaction
modification in gene regulatory
network

0. 958

σ Selection pressure 0.1

a Gene expression mapping sigmoid
function parameter

100

The list of model parameters at both the level of population dynamics and at
the individual level in symbols with descriptions and parameter values used in
this study
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protein evolution model, virus protein mutation rate
μvp = 0.1, the number of TFs NTF = 5, network density
c = 0.4, mutation rate per W μ = 0.1 with ρ = 0.028 and
ϕ = 0.042 (ϕ + δ = 1). Note that ϕ + δ = 1, since for an
interaction (wij), deletion and modification are condi-
tional on the interaction being nonzero value (wij ≠ 0).
These individual level parameters are chosen based on
our previous study [10].

Measure of unevenness among targeted receptors
Every 50 time steps after the coevolution phase has begun,
we use the Gini coefficient to calculate unevenness in the
targeted receptors among the newly infected hosts. Let
yi(i = 1,…,NR) be the mean number of newly infected
hosts who match their sequences to the ith receptor
throughout the simulation. If these values are sorted in
ascending order such that y1

′ ≤ y2
′ ≤… ≤ yn − 1

′ ≤ yn
′ , then the

Gini coefficient ¼
�
nþ 1−2

X
i¼1

n
y′i nþ 1−ið ÞX

i¼1

n
y′i

�
=n. Gini

coefficient is 1 for the maximum unevenness (inequality)
and 0 for perfect evenness (equality).

Measure of ability to switch multiple receptors using
gene regulatory network rewiring
Every regulatory interaction in the GRN is mutated 50
times and we measure how often it switches expression of
more than one gene. We then measure the average frac-
tion of such perturbations that caused a multi-receptor
expression switch over all regulatory interactions in the
network for all susceptible individuals.

Results
Population dynamics of infection
For many infectious diseases, hosts never achieve long-
term immunity due to rapid pathogen divergence. In

particular, RNA viruses such as rhinoviruses and corona-
viruses mutate so rapidly that even hosts that have recently
recovered from an infection can become susceptible again
to different strains of the same viruses circulating in the
population. The Susceptible-Infectious-Susceptible (SIS)
model is a simple infectious disease model that has been
widely used to describe population dynamics for rapidly
evolving pathogens and their target host populations [43,
44]. We introduce a model of host-virus coevolution that
extends the gene regulatory network evolution model of
gene regulatory network evolution, integrating it with a dis-
cretized form of the SIS model at the population level (see
Methods). In our combined model, population sizes can
vary, in contrast to the original gene regulatory network
evolution model that considered a fixed population size.
Since we preserve an explicit representation of each indi-
vidual genotype in the population, we can observe the evo-
lution of defense and infection mechanisms in both the
host and pathogen populations. In its standard form, the
SIS model uses fixed values to describe parameters such as
the infection transmission rate. However, on evolutionary
timescales, parameters such as host susceptibility and
pathogen virulence are likely to vary over time and conse-
quently key model parameters such as the transmissibility,
ξ, will also change. In our model, each host genotype is
represented explicitly with a gene regulatory network and
the corresponding receptor protein sequences (Fig. 1). Each
virus is represented explicitly with a receptor binding pro-
tein sequence, that will be compared to the host receptor
sequences during contact (attempted infection) events
(Fig. 1). Hence, rather than determining the rate of infec-
tion based on a fixed parameter, as in the standard SIS
model, we allow the contacting host and pathogen phe-
notypes to determine infection events. Specifically, the

key transmission parameter ξ ¼ # of infections
# of contacts

� �
that de-

termines the infection rate (r ⋅ ξ) changes as both hosts

Fig. 1 Diagram of gene regulatory network (GRN) and host-virus interaction scheme. a the GRN is composed of a transcription factor regulation
sub-network and a receptor protein coding regulation sub-network. Mutations at the network level can be used to shut down the targetable
receptor. Mutations at the protein level can result in a protein mismatch to block virus protein binding. b If more than ϵseqM % of amino acids are
one-to-one matched, we assume the virus protein can bind to the matched receptor (top). If less than the threshold (ϵseqM) are matched, we
assume the virus protein fails to bind the receptor
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and viruses evolve. Analytically, the steady state suscep-

tible and infectious population sizes are ~S ¼ δI
r⋅ξ ⋅K ⋅

1− 1
b⋅η ⋅ λN þ λD 1− δI

r⋅ξ

� �� on
and ~I ¼ 1− δI

r⋅ξ

� �
⋅K ⋅

1− 1
b⋅η ⋅ λN þ λD 1− δI

r⋅ξ

� �� on
respectively when r ⋅ ξ ≠ 0

and b⋅η−λN
λD

> 1− δI
r⋅ξ > 0 where δI = λN + λD + γ. Different

steady state values of ξ lead to different ~S and Ĩ since these
population sizes ultimately depend on the value of ξ. Since
our main interest is the evolution of host resistance mech-
anisms, we only analyzed cases where the mean popula-
tion size over time is greater than the initial susceptible
population size (Minit = 150). In cases where the mean
total population size < Minit (Additional file 2: Figure S1),
we found that the susceptible population was too small to
investigate and these cases mostly occur when the ex-
tremely infectious viruses appear which can spread widely
and makes the host population sick.
We measured the steady state transmissibility (ξ),

defined here as the mean value of ξ across the last 250
time points in each simulation, and considered how this
measure changed under different conditions such as the
protein binding sequence complexity (length, L), host
protein mutation rate (μhp), the number of required
expressed receptors (NER), the threshold above which the
virus and receptor proteins are considered to have
matched (ϵseqM), the survival rate from infected parents (kI)
and the disease-related death rate (λD). As shown in Fig. 2,
higher receptor binding sequence complexity (L) and
higher host protein mutation rates (μhp) tend to generate
lower transmissibility ξ and are therefore disadvantageous
to virus transmission. Similarly, when more receptors

have to be expressed on the host cell surface (higher
NER), there are more ways in which viruses can attempt
receptor binding and consequently, ξ tends to increase
together with the number of required expressed recep-
tor (NER), at least when the receptor binding complex-
ity is low (Additional file 3: Figure S2 a). For similar
reasons, the transmissibility ξ also increases for lower
matching threshold (ϵseqM) value, such that when protein
binding sequence complexity (L) is low, reducing the
matching threshold (ϵseqM) dramatically increases virus
transmission whereas for complex receptor binding, it does
not have an advantageous effect on ξ (Additional file 3:
Figure S2 b). That transmissibility ξ increases only in the
case of low complexity binding can be explained by the
way viruses target host receptors, as explained in the
next section. Intuitively, when a survival rate from in-
fected parents (kI) is low, non-resistant offspring have
much lower fitness (if infected) than resistant offspring,
and thus resistant individuals should increase in fre-
quency. This would actually tend to decrease ξ which is
the opposite of what we observe. However, we found
that in practice, it is more common for a low kI value
to cause population decay and a large decrease in the
number of contacts between host and virus individuals
as shown in (Additional file 4: Figure S3). A reduced
number of contacts causes a larger decrease in the

denominator of ξ # of infections
# of contacts

� �
, and therefore leads to

a net increase in ξ (Additional file 3: Figure S2 c). The
observation of higher ξ as a consequence of a high disease
related death rate (λD) is due to the same reason as for
low kI (Additional file 3: Figure S2 d). In sum, the virus
transmissibility is dependent on various conditions for dif-
ferent underlying reasons. We now consider in greater
detail why and how these variables affect the host and
virus population dynamics and virus transmission.

Host resistance strategy depends on the number of
targeted receptors
Since receptor-virus protein binding enables virus entry
and determines whether the infection succeeds, the
virus’s ability to target multiple receptors and host’s abil-
ity to escape virus protein binding will have a significant
impact on host resistance and viral pathogenicity. Hence
we measured the number of targeted receptors across a
variety of different conditions. We next show how the
number of targeted receptors can change depending on
the receptor binding complexity (protein sequence
length, L), the number of required expressed receptors
(NER), protein binding threshold (ϵseqM), the survival rate
from infected parents (kI) and the disease-related death
rate (λD). As each simulation proceeded, we measured
the frequency with which multiple receptors are targeted

Fig. 2 Transmissibility changes for different receptor binding
complexity and host protein mutation rate. The mean transmissibility
(ξ) for the last 250 time points (Error bar: one std. dev. over 100
simulations). ξ increases as the receptor binding complexity
decreases (shorter L) in which case viruses can target multiple
receptors and as the host protein mutation rate (μhp) decreases
which is due to the more limited speed of protein mutations to
counteract the rapidly evolving viruses
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simultaneously and also used the Gini coefficient to
measure the unevenness in the distribution of targeted
receptors among the newly infected hosts throughout
the simulation (see Methods). Thus, for example, when
the frequency of multi-receptor matching is low, this
indicates that mostly a single receptor is being targeted
by the virus. However, this does not guarantee that the
virus population targets the same specific receptor or
whether different subpopulations are targeting distinct
receptors. In this case, when the Gini coefficient of
targeted receptors is high, this indicates that all viruses
target a common receptor and when the Gini coefficient
is low, this implies that the matched receptor for each
host is different and that viruses have diversified into
subpopulations by targeting different receptors.
When binding complexity (L) is low, viruses can target

different receptors by means of a few amino acid muta-
tions, whereas when receptor binding complexity is high,
targeting multiple receptors is more difficult since the
different receptors are likely separated by more muta-
tions. Hence, as shown in (Fig. 3), when L is short, mul-
tiple receptors are often targeted simultaneously and the
frequency of each receptor being targeted is not highly
variable (low Gini coefficient). Considering this, more
permissive receptor binding (lower ϵseqM), increases the
chances for multiple receptor targeting when L is short
(Additional file 5: Figure S4 c, d). On the other hand,
when binding complexity is high, a single receptor is
usually targeted and the Gini coefficient is close to 1 in-
dicating there are usually one or two dominant targeted
receptors (Fig. 3). Furthermore, in this case, reducing
the receptor binding threshold does not help viruses
target multiple receptors (Additional file 5: Figure S4 c, d).
These results indicate that for complex receptor bind-
ing, one or two receptors are targeted for virus entry
and that there is no switch from one targeted receptor
to another (Fig. 3). Based on this observation, as ex-
pression of more distinct receptors is required (higher
NER), multiple receptors can be targeted and at the
same time the Gini coefficient decreases only when re-
ceptor binding complexity is low (short L). On the
other hand, when receptor binding is complex (long L),
increasing NER does not allow more receptors to be
targeted by viruses (Additional file 5: Figure S4 a, b).
Hence the number of required expressed receptors only
impacts the strategy of the virus when the receptor
binding is less complex (short L). Interestingly, the sur-
vival rate of offspring from infected parents also affects
how the viruses target receptors. As we explained in
the previous section, a low survival rate from infected
parents (kI) causes the host population to become sick
(the mean host population size is less than the initial
population and the population is composed of more in-
fected hosts than healthy hosts) and thus the population

size decays. Consequently, as shown in Fig. 6d, e and f, we
observe that variation within the host population de-
creases, suggesting that viruses will need to specialize on
binding to specific receptors (Additional file 5: Figure S4
e, f ). Specific receptor targeting as a consequence of high
disease related death rate (λD) arises for the same reason
as for low kI (Additional file 5: Figure S4 g, h). We tested
the effect of diversity in the initial virus population on the
number of targeted host proteins. We compared a case
with a highly diverse initial virus population to the default
case of two initial viruses. Thus, given an initial population
of 15 distinct founder viruses, each three viruses were
chosen to bind a distinct host receptor. With L = 30, μhp =
0.002 and NR = 5, all virus strains except one went extinct.
In this case, the frequency of multi-receptor targeting was
0.04 ± 0.04 and unevenness of targeting receptors (Gini
coefficient) was 0.793 ± 0.009 which is close to the values
for the 2 founder virus case. Even with L = 10, μhp = 0.002
and NR = 5, we could not find a significant difference from
the 2 founder case. Here, the frequency of multi-receptor

Fig. 3 Two different virus infection strategies: Targeting a specific
receptor or non-specific multiple receptors. a The fraction of time points
that multiple receptors are targeted simultaneously and b the Gini
coefficient of the frequency of targeted receptors for different receptor
binding complexities (Ls) (Error bar: std. dev. over 100 simulations). A
lower Gini coefficient (close to zero) indicates evenness and one that is
close to one indicates inequality. As the receptor binding complexity
increases (longer L) viruses target a specific receptor and do not change
the target receptor over time
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targeting was 0.16 ± 0.14 and unevenness of targeting re-
ceptors (Gini coefficient) was 0.70 ± 0.08. In sum, receptor
binding complexity (L) affects viruses by determining the
variety of targetable receptors, although this also is
dependent on parameters such as NER and ϵseqM. Also
indirect causality between host population diversity and
parameters, kI and λD has an influence on the specificity
of targetable receptors. So far, we considered how vi-
ruses behave and choose infection strategies for dif-
ferent conditions. We next explore how hosts react to
virus infection strategies differently depending on the
various environments.

Evolved preference for resistance using network rewiring
Hosts can adopt two different resistance strategies in
the model: 1) Gene regulatory network rewiring to
switch a targeted receptor off and 2) protein binding
site changes to block protein binding to a targetable
receptor. Here we consider how hosts balance the
usage of these two strategies and what conditions de-
termine their relative preference. At each time step the
most frequently targeted receptor is identified among
the set of newly infected hosts and from here we meas-
ure how often successful resistance events use network
rewiring to shut down the most targetable receptor
rather than protein sequence changes. We proceed by
counting the fraction of hosts who resisted successfully
and that do not express the most frequently targeted
receptor. If there are multiple equally frequent most
targeted receptors, we use the mean frequency across
those receptors. The fraction of resisted hosts using
network rewiring was measured at every time point.
We then accumulated these measurements over all
time points throughout the simulation and if the over-
all use of network rewiring resistance was higher than
protein level resistance, we counted the simulation as
preferential to rewiring. We subsequently measured
the fraction of simulations for which this occurred to
quantify the relative use of rewiring across many simu-
lations. Using this measure, we find that GRN rewiring
is preferentially used as protein binding complexity in-
creases (Fig. 4). This outcome relates to the number of
targeted receptors since when protein binding is more
complex, the virus most often targets a single receptor
and therefore down-regulating the targetable receptor
is usually an effective strategy. Conversely when pro-
tein binding is low complexity, viruses are able to enter
the host cell by binding multiple receptors and therefore
rewiring is a less effective host strategy for resistance. As
the host protein mutation rate (μhp) decreases, hosts also
use GRN rewiring more often due to the reduced ability
to catch up with the relatively fast-evolving virus proteins
(Fig. 4). As we increase the number of receptors that need
to be expressed (NER) then combinatorially there are fewer

possible phenotypes for a given number of required re-
ceptors, and viruses have more chances to bind to
the different receptors so that the frequency of resist-
ance using GRN rewiring decreases (Additional file 6:
Figure S5 a). Reducing the protein matching threshold
also favors the protein interaction level (Additional
file 6: Figure S5 b). Lastly, at low survival rate (kI)
from infected parents and at high disease related death
rate (λD), viruses tend to target more specific receptors,
which is due to population size decay and low population
diversity (Additional file 5: Figure S4 e ~ h). In fact, as
shown in (Additional file 7: Figure S6 g, i), the potential
for resistance (which will be explained in the following
paragraph) via network rewiring increases. However, the
small population size and low variation do not allow this
potential to be realized. This explains the apparently
contradictory result of (Additional file 6: Figure S5 c, d),
where the observed (as opposed to potential) number
of resistance events occurring via GRN decreases
when kI is low but also when λD is high. Hence, unlike
with L, NER and ϵseqM, we observed that low kI and
high λD did not promote resistance via network rewir-
ing (Additional file 6: Figure S5 c, d). In sum, hosts
choose a resistance mechanism depending on the virus
infection strategy and their defense ability relative to
viruses (how fast they react to the fast evolving
viruses). In the next section, we consider the temporal
dynamics of hosts with respect to regulatory network
and receptor protein binding evolution.

Fig. 4 Preference for resistance using gene regulatory network
(GRN) rewiring rather than protein mutations. The fraction of
simulations where GRN rewiring strategy is used more often than
protein binding site change for successful resistance under different
protein binding complexities (Ls) and host receptor sequence
mutation rates (μhp). In a more complex receptor binding system,
hosts tend to select the GRN rewiring strategy more often than the
protein mutation strategy due to the single receptor targeting
infection strategy. Since low μhp means a lower rate of protein
mutations to counteract the rapidly evolving viruses, hosts tend to
favor a protein mutation strategy less
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Evolutionarily gained potential to switch from infectious
to resistance using GRN rewiring and protein mutations
In the previous section, we showed that hosts determine
the resistance strategy between GRN rewiring and pro-
tein binding site mutation depending on factors such as
binding site complexity and mutation rate relative to
that of the virus. We now consider the evolution of the
potential within the population to resist future virus
contact events. For each virus in the infected group, we
selected all susceptible hosts in the population that can
be potentially infected by that virus and measure how
efficiently each host can avoid infection via a random
mutation either in its GRN or in protein binding sites.
Every regulatory interaction in the GRN was mutated
multiple times and we then measured how often it
switched to becoming resistant as a consequence of
these network perturbations. Similarly, for each matched
receptor, we mutate the receptor using the host protein
mutation rate at each site (as would occur during the
simulation) and measured the average fraction of such
perturbations that caused a switch to resistance. The
reason for using the same protein mutation rate that is
used within the simulation rather than a single random
amino acid mutation for the perturbation is that the im-
pact of a single site amino acid mutation differs depend-
ing on the protein binding site length (L). For example,
when L is long, a chance of switching from infectious to
resistible is very low, whereas when L is short, a host
can easily switch from infectious to resistible.
For resistance acquired via regulatory rewiring, the

ability to resist increases only when the protein com-
plexity is high (Fig. 5 a blue and green lines), while it
does not increase when the protein binding complexity
is low (red line). It is plausible that when the protein
binding complexity is low, since network rewiring is not
a good resistance strategy (Fig. 4) due to multiple recep-
tor binding site matches by viruses (Fig. 3), it is unneces-
sary for individuals to evolve network rewiring potential

and for this reason few perturbations are expected to
change receptor gene expression to switch the targetable
receptor off. In contrast, when the protein binding com-
plexity is high so that the targeted receptor is specialized
to one receptor (Fig. 3) and switching targetable receptor
off by network rewiring is adopted by hosts (Fig. 4),
hosts evolve the potential to resist by network rewiring.
In contrast, for resistance via protein mutations, we ob-
served that under all conditions hosts rapidly evolve the
ability to acquire resistance via protein binding site
changes (Fig. 5b and Additional file 7: Figure S6) be-
cause the protein binding site mutations can directly
affect virus protein binding.
We also observed that there is an apparent tradeoff in

that, as the resistance ability via rewiring increases
(Fig. 5a) with receptor binding complexity, the ability to
resist using binding site mutations decreases (compare
order of curves in Fig. 5a vs Fig. 5b). The complexity of
the protein-protein interaction appears therefore to be
an important factor driving the transition toward resist-
ance using regulation and thus leading to higher GRN
complexity. As expected, when the protein mutation rate
is low, hosts will use GRN rewiring more for resistance
as a consequence of the limited capacity for protein mu-
tations to coevolve with the viruses (Additional file 7:
Figure S6 a, b). The ability to resist using network rewir-
ing also depends on the number of required expressed
receptors (NER). As more receptors are required to be
expressed (NER), viruses have a greater probability of
targeting more than one receptor. Hence, as shown
above in (Additional file 6: Figure S5 a), the fraction of sim-
ulations where GRN rewiring is used in preference to pro-
tein mutation decreases for higher values of NER. However,
for the same reason, hosts are under pressure to evolve the
ability to resist using network rewiring more when more
receptors are required to be expressed (Additional file 7:
Figure S6 c, d). In the (Additional file 5: Figure S4 c, d), in
higher matching threshold (ϵseqM) condition, viruses are

Fig. 5 Trade-offs in the resistance potential between the gene regulatory network and receptor proteins. For the susceptible host population, the
ability to resist using a GRN rewiring and b protein binding site changes is measured for different receptor binding complexities (Error bar: std.
dev. over 100 simulations). As the receptor binding complexity increases, hosts increase evolutionary potential more on the GRN while decreasing
it on receptor proteins (μhp = 0.01, NER/NR = 3/5, ϵseqM = 90 %, kI = 0.8)

Shin and MacCarthy BMC Evolutionary Biology  (2016) 16:233 Page 10 of 15



not able to target multiple receptors and the fraction of
simulations where GRN rewiring is preferentially used also
increases (Additional file 6: Figure S5 b). Consequently
high ϵseqM results in evolution of the potential to resist in-
fection using GRN (Additional file 7: Figure S6 e, f). A
lower survival rate from infected parents induces viruses to
target specific receptors (Additional file 5: Figure S4 e, f).
Therefore, for such viruses, hosts are evolved to increase
the ability to resist using GRN rewiring to shut down the
targetable receptor (Additional file 7: Figure S6 g, h).
So far, we explored various conditions that can pro-

mote the evolution of the ability to resist using GRN
rewiring. Interestingly, receptor binding complexity bal-
ances the usages of GRN rewiring vs amino acid muta-
tions for resistance. Resistance via protein binding site
mutation is much higher than that using network rewir-
ing under all conditions. This may explain why receptor
binding site mutations have been reported often for
virus entry defense mechanisms in contrast to resistance
via regulatory changes.

Genetic diversity and host range
In many previous studies it has been shown that antag-
onistic coevolution between host and pathogen popula-
tions correlates with increased genetic diversity [13, 45].
We checked that the diversity of the regulatory network,
the phenotype and the protein sequence all increase
throughout the coevolution phase (Additional file 8:
Figure S7). To quantify diversity we used the Margalef
index [46], an ecological measure of biodiversity that
takes into account the expected increase in species
sampled as a consequence of increased sample size
the number of genetic variants−1
ln total number of individualsð Þ

� �
. After we simplified each GRN

using the sign of each interaction matrix entry (e.g., −0.8
to −1 and +0.8 to 1), we measured the GRN diversity of a
susceptible host group as the number of distinct GRNs−1

ln susceptible individualsð Þ . We

found that diversity of GRNs, phenotypes and receptor
protein sequences all increased throughout the coevolu-
tionary phase, showing that coevolution between hosts
and viruses is an important factor in producing genetic di-
versity. We also used the Margalef index to quantify the
genetic diversity of the infected group to estimate virus
host range. We compared the diversity over the last 250
time steps in intervals of 50-time steps to identify variables
affecting host range and under what conditions pathogens
evolve as specialists or generalists (Fig. 6). We observed
that pathogens become either specialists or generalists
dependent primarily on three parameters: protein binding
complexity, survival rate for offspring from infected par-
ents, and the matching threshold. For example, as receptor
binding complexity increases, viruses tend to become
specialists, which directly relates to the number of targeted
receptors due to the difficulty in this case for binding

multiple receptors (Fig. 6a ~ c). Also a lower survival rate
for offspring from infected parents narrows the host range
and leads viruses to become specialists because this condi-
tion causes the host population size to decay and thus
reduces variations within the host population (Fig. 6d ~ f).
For the same reason, since a low matching threshold is
beneficial for virus entry when the binding complexity is
low (short L), viruses become specialists (Fig. 6g ~ i).

Discussion
We showed that regulatory changes can be used to
suppress expression of cell surface receptor genes lead-
ing to a blocking of virus entry. Changes in the expres-
sion of virally-targeted receptors has been shown to
block virus transmission experimentally, for example, in
both dengue virus (DENV) [25] and Hepatitis C virus
(HCV) [24], siRNAs can be used to eliminate cell surface
receptors and suppress virus entry and infection. At the
same time, specific receptors can be intentionally
expressed in the context of tumor gene therapy, for
example, allowing adenovirus vectors to be used [31, 32]
to deliver apoptosis-activating genes to kill tumor cells.
Two mechanisms of resistance were addressed in our

model: rewiring of gene regulatory networks and receptor
binding site mutations. The balance in usage between
these two mechanisms depends on various conditions. As
the protein-protein interaction at the cell surface increases
in complexity (in our model represented by the binding
site length), viruses tend to target a specific receptor and
hosts preferentially use network rewiring more often than
receptor amino acid changes. In contrast, when the recep-
tor binding site has lower complexity, viruses are able to
enter via multiple receptors and hosts evolve receptor
amino acid changes to escape viral protein binding. One
can ask why is it that in nature, examples of resistance via
receptor amino acid mutations appear to be more com-
mon than network rewiring? In the examples of dengue
virus (DENV) and hepatitis C virus (HCV) resistance
through experimentally-induced receptor down-regulation
it was shown that, since there several alternative receptors
expressed on the cell surface that viruses can use to enter
host cells, multiple inhibitory siRNAs for different recep-
tors worked better than a single siRNA for one receptor,
although both studies showed that it was difficult to block
infection completely [24]. Thus, for example, HCV can
enter human liver cells via several cell surface receptors
including CD81 tetraspanin, claudin1(CLDN1), low
density lipoprotein receptor receptor (LDLR) and scav-
enger receptor class B type 1 (SR-B1). In our model,
when receptor binding has low complexity, multiple
receptors are targeted by viruses and receptor amino
acid mutations are used preferentially over network
rewiring. Given this observation, the capability of vi-
ruses to use alternative receptors for host cell entry is a
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plausible explanation of why resistance using network
rewiring changes is difficult in practice. Another possible
reason for more frequent protein level resistance could be
related to the level of functional redundancy among re-
ceptors. Higher NER indicates less functional redundancy
among receptors, and we found that protein level resist-
ance was favored for higher NER (Additional file 6: Figure
S5a). Although functional redundancy is often observed in
receptors such as nectin and chemokine receptors as
described in Introduction, it is plausible that viruses evolve
to target receptors whose absence cannot be compensated
for, so that hosts have to express all (or nearly all) required
receptors for their normal function, which makes it diffi-
cult to use network level resistance.

In order to investigate the importance of including the
complex GRN for controlling receptor gene expression,
we compared our model with one that did not contain
gene regulatory interactions for receptor coding genes.
We designed this model by using a diagonal matrix
regulatory network both for TF genes and for the recep-
tor coding genes. Complex gene regulation by TFs were
removed by having a diagonal matrix with 1 s for the
regulatory gene network. To satisfy the minimum num-
ber of required expressed receptors (NER/NR = 3/5), we
set the initial density of non-zeros on the diagonal for
the receptor coding genes with probability 0.7. Here,
mutations can occur only on the diagonal of receptor
coding genes and no regulation from other genes is

d e f

g h i

Fig. 6 Host range measured by infected host population’s genetic diversity under different conditions. The first column is the gene regulatory
network diversity, the second column is the phenotype diversity and the last column is the receptor protein sequence diversity. Viruses become
specialists when receptor binding complexity (L) increases (a, b, c), survival rate for offspring from infected parents (kI) decreases (d, e, f) and
amino acid matching threshold for protein binding (ϵseqM) decreases (g, h, i). For low ϵseqM and kI, population dynamics generally follows that
shown in Additional file 2: Figure S1 b. Hence, in d ~ i) we considered all 100 simulations for measuring the genetic diversity
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possible. Compared to this model, the benefit of having
a complex GRN is that the network is capable of evolv-
ing increased potential for resistance using network
rewiring as shown in Fig. 5a for complex protein binding
(long L), as an example. Here, in the case of complex
protein binding where a specific receptor is targeted, it
is not possible for the potential for resistance to change
because there is only a single entry on the diagonal
which can change the expression of the targeted recep-
tor. We compared the preference for GRN level resist-
ance between these two models. We found that the
preference of GRN rewiring decreased for the model
without gene regulatory interactions (Additional file 9:
Figure S8a). Furthermore, in order to express at least
NER receptors for the normal host cell function, down-
regulating a receptor gene for resistance can be deleteri-
ous, and therefore, hosts need to be able to change the
expression of multiple receptors simultaneously, in
particular to compensate for receptor down-regulation.
We found that the systems with complex GRNs evolve
the ability to switch the expression of multiple receptors
(Additional file 9: Figure S8b and Methods), whereas
without the GRNs, multiple receptor expression change
is impossible given a single mutation.
Although defending from infection at the level of virus

entry would appear to be an effective resistance mechan-
ism, the host evolution rate is usually too slow relative
to most virus populations and furthermore, viruses are
often capable of entering host cells via interaction with
multiple receptors. For these reasons, host strategies
may have evolved preferentially to allow viruses to enter
cells but to focus defense mechanisms to the post-entry
stage by evolving innate and adaptive immune systems.
For example, a previous study of North American house
finches showed rewiring of gene regulatory networks to
up-regulate immune related genes in a relatively short
timespan of just 12 years [7].
In addition to network rewiring and receptor amino

acid mutations, mutations causing premature stop co-
dons can be used by hosts to block virus entry. CCR5
(CC-chemokine receptor-5) is a co-receptor for HIV
entry that facilitates virus entry. A CCR5 allele carrying a
32-bp deletion (ccr5Δ32) in the open reading frame gener-
ates a premature stop codon leading to an inactive receptor
protein [47, 48]. Homozygous ccr5Δ32/ccr5Δ32 carriers
show high immunity to HIV infection and heterozygous
wt/ccr5Δ32 carriers show partial resistance to HIV cell
entry or delayed progression of the disease. A similar
example is an allele of the TVBR receptor involving a 4-bp
insertion which contains a stop codon resulting in protec-
tion against Avian Sarcoma and Leukosis Virus (ASLV)
entry in chicken [49]. Of note is that even though these
stop codon-containing alleles can block virus entry, they
work effectively only in homozygous form, in contrast to

alleles encoding regulatory repression, which may be effect-
ive in single copy form.

Conclusions
Entry to the cell is the first step in all virus infections.
Evolving barriers to infection at the level of entry to the
host cell can become an effective resistance mechanism. Al-
though many examples of defense mechanisms have been
reported that are based on disruption to cell surface recep-
tor binding sites due to copy number variation and muta-
tions producing stop codons have been reported, examples
of resistance by gene regulatory changes in receptor ex-
pression levels are less commonly observed. We built a
host-virus coevolution model where hosts are represented
using both receptor amino acid sequences and gene regu-
latory networks (GRNs) that control expression of the cell
surface receptor genes. We explored a range of evolution-
ary conditions that might determine the balance of host
resistance mechanisms at the GRN level compared to pro-
tein interaction level. We observed that the complexity, or
length, of the receptor binding site (L) is one of the key
factors that have a significant impact on both the infection
strategy of the virus and resistance mechanism of the host.
When L is short, viruses evolved to be generalists and tar-
get multiple receptors for cell entry. In this case hosts
evolve to a counter-strategy that uses binding site muta-
tions to defend against virus protein binding. In contrast,
when L is long, viruses evolve to be specialists and focus
on targeting one particular receptor, whereas hosts evolve
a counter strategy at the network level that uses regulatory
changes to turn off the expression of the targeted receptor.
Considering examples of virus entry such as hepatitis C
virus, where viruses can make use of multiple receptors
for entry to the cell, it is plausible that viruses predomin-
antly evolve low complexity receptor binding and that in
these cases hosts evolve to use protein binding level resist-
ance mechanisms rather than GRN level mechanisms.

Additional files

Additional file 1: C++ simulation source codes. (ZIP 59 kb)

Additional file 2: Figure S1. Two different types of susceptible and
infectious population dynamics. Typical population dynamics of a)
healthy population case where the mean host population size is greater
than the initial host population size and b) sick population case where
the mean host population size is less than the initial population and the
population is composed of more infected hosts than healthy hosts.
(L = 10, NER = 3, μhp = 0.002, ϵseqM = 75 %, kI = 0.8). (PDF 154 kb)

Additional file 3: Figure S2. Transmissibility changes for different
conditions. The mean transmissibility (ξ) for the last 250 time points (Error
bar: one std. dev. over 100 simulations). a) ξ increases as the number of
required receptor expression (NER) increases when the binding
complexity (L) is low. For low receptor binding threshold (ϵseqM), low
survival rate from both infected parents (kI) and high disease related
death rate (λD), population dynamics generally follows that shown in
Additional file 2: Figure S1 b. Hence, in b), c) and d) we considered all
100 simulations for the comparison of mean ξ values. ξ increases as (b)
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the receptor binding site matching threshold (ϵseqM) decreases, as (c) the
survival rate from both infected parents (kI) decreases and as (d) disease
related death rate (λD) increases. (PDF 215 kb)

Additional file 4: Figure S3. The number of contacts between host
and parasite populations for different offspring survival rate from infected
parents. The number of contacts between host and parasite populations
decreases when offspring survival rate from infected parents (kI) is low
(Error bar: one std. dev. over 100 simulations). (PDF 49 kb)

Additional file 5: Figure S4. Viruses change their receptor targeting
strategy under different conditions. The first column is the fraction of
time points that multiple receptors are targeted simultaneously and the
second column is the Gini coefficient of the frequency of targeted
receptors (Error bar: one std. dev. over 100 simulations). a, b) When the
binding complexity is low, a greater required number of expressed
receptors (NER) causes viruses to target multiple receptors simultaneously.
However, when the binding complexity is high, a higher required
number of expressed receptors does not change the targeting to a
multiple receptor binding strategy. For low receptor binding threshold
(ϵseqM) and survival rate from both infected parents (kI), population
dynamics generally follows the trend shown in Additional file 2: Figure S1
b. Hence, in c ~ h) we considered all 100 simulations for the comparison
of the fraction of time points that multiple receptors are targeted
simultaneously and the Gini coefficient of the frequency of targeted
receptors. c, d) The low amino acid matching threshold for the receptor
binding (ϵseqM) facilitates viruses to target multiple receptors. e, f) The low
survival rate of an offspring from both infected parents results in viruses
targeting more specific receptors for more robust receptor binding. g, h)
The high disease related death rate (λD) causes more specialized receptor
targeting. (PDF 473 kb)

Additional file 6: Figure S5. Preference for resistance using gene
regulatory network (GRN) rewiring to protein mutations under different
conditions. The fraction of simulations where GRN rewiring strategy is
used more often than the protein binding site change strategy for
resistance for different a) required number of expressed receptors (NER),
b) amino acid matching threshold for the receptor binding (ϵseqM), c)
survival rate from both infected parents (kI) and d) disease related death
rate (λD). For low ϵseqM, kI and λD, the population dynamics generally
follows that shown in Additional file 2: Figure S1 b. Hence, in b, c, d) we
considered all 100 simulations for the comparison of the preference for
resistance using GRN rewiring to protein mutations. a) As more receptors
are required to be expressed (higher NER), hosts preferentially use GRN
rewiring less often than protein mutations. b) When the binding
complexity is low, for lower amino acid matching threshold for the
receptor binding (ϵseqM), hosts do not preferentially select GRN rewiring
strategy. c) When kI is low, hosts does not favor the GRN rewiring
strategy. d) When the disease related death rate (λD) is high, hosts hosts
less favor the GRN rewiring strategy for resistance. (PDF 208 kb)

Additional file 7: Figure S6. Evolutionary potential for resistance in the
gene regulatory network and receptor proteins for different conditions.
For susceptible host population, the ability to resist using GRN rewiring
(1st column) and protein binding site changes (2nd column) is measured
for different a, b) host protein mutation rates (μhp), c, d) number of
required expressed receptors (NER), e, f) amino acid matching threshold
for the receptor binding (ϵseqM), g, h) survival rate from both infected
parents (kI) and i, j) disease related death rate (λD) (Error bar: std. dev.
over 100 simulations). For low ϵseqM and kI, population dynamics
generally follows that of Additional file 2: Figure S1 b. Hence, in e ~ h) we
considered all 100 simulations for the comparison of the resistance
potentials. a, b) For lower μhp, hosts evolve a GRN based strategy (L =
30, μhp = 0.01, ϵseqM = 90 %, kI = 0.8). c, d) When expression of more
receptors is required, hosts evolve the potential for resistance using GRN
rewiring to higher level. (L = 30, NER/NR = 3/5, ϵseqM = 90 %, kI = 0.8), e, f)
When receptor binding is simple (short L), for reduced ϵseqM hosts does
not necessarily evolve the potential for a GRN rewiring strategy (L =
10, μhp = 0.002, NER/NR = 3/5, kI = 0.8). g, h) Selection pressure triggered by
the low kI evolves the potential for GRN rewiring strategy (L = 30, μhp =
0.002, NER/NR = 3/5, ϵseqM = 90 %). i, j) The potential for resistance using
network rewiring increases both for low and high diseases related death
rates (λD). (PDF 2128 kb)

Additional file 8: Figure S7. Increased genetic diversity in the gene
regulatory networks, phenotypes and receptor proteins. Genetic diversity
is measured using the Margalef index (see the last section in Results). a)
whole GRNs (blue), transcription factor regulation sub-networks (red),
receptor regulation sub-networks (green) of susceptible hosts. b)
Phenotypes (gene expression levels) of susceptible populations. c)
Receptor sequence of susceptible populations. (PDF 461 kb)

Additional file 9: Figure S8. The effect of having a complex gene
regulatory network (GRN) for controlling receptor gene expression. a)
Preference for resistance using GRN rewiring to protein mutations
decreases when there are no regulatory interactions between genes
(without regulatory interactions in the gene network) (NER/NR= 3/5, ϵseqM =
90 %, kI= 0.8). b) The ability to switch the expression of multiple receptors
with a complex GRN. The probability of multiple receptor gene
expression switching (see Methods) increases during host-virus
coevolution (L = 30, μhp = 0.01 and 0.002, ϵseqM = 90 %, kI = 0.8).
(PDF 245 kb)
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