39 research outputs found

    LY 294002 inhibits adenosine receptor activation by a mechanism independent of effects on PI-3 kinase or casein kinase II

    Get PDF
    Adenosine reduces both evoked and spontaneous calcium-dependent acetylcholine (ACh) release through a mechanism downstream of calcium entry at amphibian motor nerve endings (Silinsky EM. J Physiol 1984; 346: 243-6). LY 294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), an inhibitor of both phosphoinositide-3 kinase (PI-3 kinase) and casein kinase II, has been reported to increase spontaneous ACh release reflected in miniature endplate potential (MEPP) frequencies independently of intraterminal calcium at the frog neuromuscular junction (Rizzoli SO, Betz WJ. J Neurosci 2002; 22: 10680-). It has been suggested that the increase in MEPP frequency caused by LY 294002, is mediated through an action on synaptotagmins, vesicle associated calcium sensors believed to trigger synaptic vesicle exocytosis. We thus examined the effects of adenosine on MEPP frequencies and evoked ACh release reflected as endplate potentials (EPPs) in order to determine if the presumed calcium-independent ACh release is affected by adenosine. We also wanted to determine if PI-3 kinase or casein kinase II is involved in mediating or modulating the inhibitory effects of adenosine. To these ends, we examined the effects of adenosine in the presence of LY 294002, wortmannin (a highly selective the PI-3 kinase inhibitor), or DRB (5,6-dichlorobenzimidazole riboside, an inhibitor of casein kinase II). LY 294002 reduced the sensitivity of both MEPP frequencies and the nerve-evoked calcium dependent EPPs to adenosine. The occlusive effects of LY 294002 on the actions of adenosine on MEPPs and EPPs were overcome by increasing adenosine concentration. Neither wortmannin nor DRB had any effect on the sensitivity of the EPPs to adenosine indicating that neither PI-3 kinase nor casein kinase II inhibition mediates the reduction in motor-nerve terminal sensitivity to adenosine produced by LY 294002. The results indicate a competitive relationship between LY 294002 and adenosine at A1 receptors at the frog neuromuscular junction. This effect is independent of the previously described effects of LY 294002 on the exocytotic process, and is also independent of PI-3 kinase or casein kinase II

    The Effect of DNA-Dependent Protein Kinase on Adeno-Associated Virus Replication

    Get PDF
    BACKGROUND: DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme and plays an important role in determining the molecular fate of the rAAV genome. However, the effect this cellular enzyme on rAAV DNA replication remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we characterized the roles of DNA-PK on recombinant adeno-associated virus DNA replication. Inhibition of DNA-PK by a DNA-PK inhibitor or siRNA targeting DNA-PKcs significantly decreased replication of AAV in MO59K and 293 cells. Southern blot analysis showed that replicated rAAV DNA formed head-to-head or tail-to-tail junctions. The head-to-tail junction was low or undetectable suggesting AAV-ITR self-priming is the major mechanism for rAAV DNA replication. In an in vitro replication assay, anti-Ku80 antibody strongly inhibited rAAV replication, while anti-Ku70 antibody moderately decreased rAAV replication. Similarly, when Ku heterodimer (Ku70/80) was depleted, less replicated rAAV DNA were detected. Finally, we showed that AAV-ITRs directly interacted with Ku proteins. CONCLUSION/SIGNIFICANCE: Collectively, our results showed that that DNA-PK enhances rAAV replication through the interaction of Ku proteins and AAV-ITRs

    Systems microscopy approaches to understand cancer cell migration and metastasis

    Get PDF
    Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration

    Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Get PDF
    Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies

    Vascular Dysfunction in Horses with Endocrinopathic Laminitis

    Get PDF
    Endocrinopathic laminitis (EL) is a vascular condition of the equine hoof resulting in severe lameness with both welfare and economic implications. EL occurs in association with equine metabolic syndrome and equine Cushing's disease. Vascular dysfunction, most commonly due to endothelial dysfunction, is associated with cardiovascular risk in people with metabolic syndrome and Cushing's syndrome. We tested the hypothesis that horses with EL have vascular, specifically endothelial, dysfunction. Healthy horses (n = 6) and horses with EL (n = 6) destined for euthanasia were recruited. We studied vessels from the hooves (laminar artery, laminar vein) and the facial skin (facial skin arteries) by small vessel wire myography. The response to vasoconstrictors phenylephrine (10-9-10-5M) and 5-hydroxytryptamine (5HT; 10-9-10-5M) and the vasodilator acetylcholine (10-9-10-5M) was determined. In comparison with healthy controls, acetylcholine-induced relaxation was dramatically reduced in all intact vessels from horses with EL (% relaxation of healthy laminar arteries 323.5 ± 94.1% v EL 90.8 ± 4.4%, P = 0.01, laminar veins 129.4 ± 14.8% v EL 71.2 ± 4.1%, P = 0.005 and facial skin arteries 182.0 ± 40.7% v EL 91.4 ± 4.5%, P = 0.01). In addition, contractile responses to phenylephrine and 5HT were increased in intact laminar veins from horses with EL compared with healthy horses; these differences were endothelium-independent. Sensitivity to phenylephrine was reduced in intact laminar arteries (P = 0.006) and veins (P = 0.009) from horses with EL. Horses with EL exhibit significant vascular dysfunction in laminar vessels and in facial skin arteries. The systemic nature of the abnormalities suggest this dysfunction is associated with the underlying endocrinopathy and not local changes to the hoof
    corecore